STEVEN R. WOODRUFF, PH.D.

Department of Engineering — James Madison University — 801 Carrier Dr, 1107 EnGeo, Harrisonburg, VA 22807 — 540.568.5642 — woodrusr@jmu.edu — www.stevenrwoodruff.com

EDUCATION

Ph.D., Civil Engineering, the University of Michigan Graduate certificate in Science, Technology, and Public Policy	2022
M.S., Civil Engineering, the University of Michigan	2019
B.S., Civil Engineering, Tufts University Study abroad, the University of Hong Kong	2017
PROFESSIONAL APPOINTMENTS	
Assistant professor A James Madison University – Department of Engineering A	Aug. 2023 – Present
Visiting assistant professor Ju Washington and Lee University – Department of Physics and Engineering	ıl. 2022 – Jun. 2023
Graduate student research assistant Ju The University of Michigan – Department of Civil and Environmental Engi	n. 2017 – Jun. 2022 neering
Adjunct facultyJanuaryJames Madison University – Department of Engineering	n. 2022 – May 2022
Graduate student instructor Jan The University of Michigan – Department of Civil and Environmental Engi	n. 2021 – May 2021 neering
SELECTED AWARDS AND HONORS	
Graduate research fellowship program (GRFP) fellow National Science Foundation (NSF)	2018 - 2022
Honored Instructor Award The University of Michigan	2021
AISC/GLFEA scholarship American Institute of Steel Construction and Great Lakes Fabricators and P	2017 Erectors Association
SEAMASS scholarship Structural Engineering Association of Massachusetts	2017
Max O. Urbahn scholarship Society of American Military Engineers, New York City Post	2016

INSTRUCTIONAL EXPERIENCE

Statics and introductory mechanics (ENGR 212)

James Madison University

- Instructor of record
- Taught rigid-body statics and strength of materials for applications in engineering
- Reinforced lessons with hands-on laboratory experiments conducted by students

Materials and mechanics (ENGR 314)

- James Madison University
- Instructor of record
- Taught introductory material science and solid mechanics for applications in engineering
- Reinforced lessons with hands-on laboratory experiments conducted by students

Statics and dynamics (ENGR 212)

James Madison University

- Instructor of record
- Taught rigid-body statics and dynamics for applications in engineering
- Reinforced lessons with hands-on laboratory experiments conducted by the students

Fluid mechanics (ENGR 311)

James Madison University

- Instructor of record
- Introduced students to introductory fluid mechanics with an emphasis on civil and mechanical applications
- Reinforced lessons with hands-on laboratory experiments conducted by the students

Introduction to engineering design (ENGN 250)

Washington and Lee University

- Instructor of record
- Project-based course on design processes
- Advised students on origami-inspired acoustic panel design, analysis, and prototyping

Capstone design (ENGN 379)

- Washington and Lee University
- Instructor of record
- Continuation of ENGN 378
- Advised students as they completed prototyping and presentation of capstone projects

Mathematical methods for physics & engineering (ENGN/PHYS 225) Winter 2023

Washington and Lee University

- Instructor of record
- Taught mathematical concepts with applications in engineering and physics
- Flipped-classroom model with high-level- Bloom's-taxonomy, project-based assignments
- Emphasis on using Python for numerical, symbolic, and graphical solution verification

Capstone design (ENGN 378)

Washington and Lee University

• Instructor of record

Fall 2022

Fall 2023

Winter 2023

Spring 2023

Fall 2024

Spring 2025

Spring 2024

2/8

- Advised students in self-directed capstone projects for local non-profits
- Heavily emphasized effective community outreach into curriculum
- Instructed students on project management, design planning, and technical communication

Introduction to engineering (ENGN 178)

Washington and Lee University

- Instructor of record
- Introduced students to engineering fields, design processes, ethics, policy, and skills
- Implemented a flipped-classroom model to teach coding (MATLAB) and CAD (Inventor)
- Designed and implemented individual and group term projects to demonstrate learned skills
- Emphasized critical thinking, societal impact, technical communication, and continued learning
- Supervised an undergraduate teaching assistant

Engineering decisions (ENGR 112)

James Madison University

- Instructor of record
- Conducted in-person lectures and hands-on class activities
- Designed and implemented projects involving CAD (SolidWorks) and data analysis (MATLAB)
- Collaborated with a teaching team and supervised an undergraduate student instructor
- Incorporated community impact of engineering and critical thinking into the curriculum

Computational methods (CEE 303)

The University of Michigan

- Graduate student instructor (GSI) supervised by Professor Ann Jeffers
- Designed, implemented, and graded weekly labs
- Created videos, codes, and Jupyter Notebook files to aid student learning
- Hosted office hours and discussion pages to help students with the labs and course material
- Labs focused on applications of numerical methods in civil and environmental engineering
- Recipient of Honored Instructor Award for having made a significant impact on students

RESEARCH MENTORING EXPERIENCE

Lydia Pelham (undergraduate) Acoustic control using adaptive, curved-crease origami metamaterials	Dec. 2023 – Present
Nelson Jenkins (undergraduate) Acoustic control using adaptive, curved-crease origami metamaterials	Dec. 2023 – May 2025
Valentina Paz-Soldan (undergraduate) Acoustic control using adaptive, curved-crease origami metamaterials	Dec. 2023 – Dec. 2024
Hardik Patil (graduate) Deployable, rapid-assembly ship hulls using curved-crease origami	Jan. 2021 – Aug. 2022
Jack Riley (undergraduate) Redistributing corrugation stiffness using curved creases	Jan. 2019 – Aug. 2019
Bolivar Perez (undergraduate) Large-scale origami prototype	Jun. 2018 – Aug. 2018
Ella Yazbeck (undergraduate) Curved-crease origami arches	Jun. 2017 – Apr. 2018

Fall 2022

Winter 2021

Spring 2022 & 2024

RESEARCH EXPERIENCE

Research interests:

- Improving student outcomes through interteaching in an engineering education context
- Simple and rapid modeling of dynamic and adaptive structures
- Exploration of novel and interdisciplinary applications of curved-crease origami
- Computational modeling of highly nonlinear solids and structures

Interteaching in engineering

Assistant professor *PI:* Steven Woodruff *Collaborators:* Ben Blankenship (James Madison University)

• Measured the effect of interteaching on the learning outcomes of students in three sections of ENGR 212: Statics and Introductory Mechanics.

Acoustic control using adaptive, CCO metamaterials May 2023 – Present

Visiting assistant professor, assistant professor *PI*: Steven Woodruff

- Constructed, validated, and implemented a 2D acoustic waveguide to test origami samples
- Implemented acoustic simulations in ANSYS

Complex shape morphing in origami with simple actuationSep. 2020 – PresentGraduate research assistant, NSF GRFP fellow, visiting assistant professorPI: Evgueni Filipov (University of Michigan)

- Identified a unique property of curved-crease origami where local, simple actuations can result in global, complex deformations for use in dynamic deployment or shape morphing.
- Improved the bar and hinge model to accommodate local actuations with greater ability to measure torsional and bending deformations.

Deployable, rapid-assembly ship hulls using CCO Jan. 2021 – Aug. 2022

Graduate research assistant and NSF GRFP fellow *PI:* Evgueni Filipov Collaborators: Zhongyuan Wo and Hardik Patil (University of Michigan)

- Collaborated with a team of origami engineers and the Office of Naval Research to design ship hulls that could be assembled on-site from flat sheets.
- Provided expertise on rapid modeling of curved-crease origami using the bar and hinge model for use alongside fluid-structure analysis in Ansys.

Bar and hinge modeling of curved-crease origami

Graduate research assistant and NSF GRFP fellow *PI:* Evgueni Filipov

- Developed a rapid and accurate method of modeling the deformations of thin sheets folded about curved creases for both folding and post-fold loading.
- Calibrated the model stiffness to match theoretical and experimental solutions.
- Explored the stiffness response of curved-crease origami under highly nonlinear, post-fold loading to understand how folding increases global stiffness.

Redistributing corrugation stiffness using curved creases Jan. 2019 – Jun. 2020

Jan. 2025 – Present

Jun. 2018 – Aug. 2020

Graduate research assistant and NSF GRFP fellow

PI: Evgueni Filipov Collaborator: Jack Riley (University of Michigan)

- Introduced novel, curved-crease origami designs that give isotropic bending stiffness in corrugated sheets without additional stiffeners or supports.
- Developed two second-moment-of-area-based methods for predicting the bending stiffness anisotropy using deformed shapes from the bar and hinge model.
- Performed load-deflection experiments on polyester sheet prototypes to assess stiffness anisotropy in bending to confirm the prediction methods.

Finite element analysis of curved-crease origami

Jun. 2017 – Apr. 2018

Graduate research assistant *PI:* Evgueni Filipov

- Developed a method for modeling curved-crease origami folding and post-fold loading in Abaqus using shell elements for sheets and a connector scheme to model creases.
- Performed strain energy analysis to compare theoretical, geometry-based predictions for curvedcrease origami deformations.
- Identified limitations to existing kinematic theories and unique behaviors of curved-crease origami after folding.

GRANT PROPOSAL WRITING EXPERIENCE

- 1. JMU CISE Mini-grant. "Arduino sensors for ENGR 112 term project." \$750 (funded). May 2025. PI: Steven Woodruff.
- 2. JMU CISE Faculty Development Grant. "Development of an origami-inspired metamaterial for active acoustic control." \$2,650 (funded). Jan. 2025 - May 2025. PI: Steven Woodruff.
- 3. JMU CISE Mini-grant. "Arduino sensors for ENGR 112 term project." \$734 (funded). Apr. 2024. PI: Steven Woodruff, Shraddha Joshi, Kyle Gipson.
- 4. JMU CISE Faculty Development Grant. "Development of an origami-inspired metamaterial for active acoustic control." \$3,200 (funded). Jan. 2024 - May 2024. PI: Steven Woodruff.
- 5. Washington and Lee University Lenfest Grant. "Characterization of curved folding using digital image correlation." \$6,500 (funded), May 2023 Jul. 2023. PI: Steven Woodruff.
- 6. Washington and Lee University Spring Term Course Enhancement Funding. "Origamiinspired, acoustic panel design course." \$2,027 (funded), May 2023. PI: Steven Woodruff.
- Washington and Lee University Dean's Office. "Prototyping materials for capstone projects." \$750 (funded), Jan. 2023 - Apr. 2023. PI: Steven Woodruff.
- 8. Washington and Lee University Dean's Office. "Arduino board and environmental sensor kits for hands-on education." \$750 (funded), Sep. 2022 Dec. 2022. PI: Steven Woodruff.
- 9. Office of Naval Research. "Rapid assembly of continuous surfaces by adhesion of curvedcrease origami." \$120,000 (funded), Jan. 2021 - Dec. 2021. PI: Evgueni Filipov.
- 10. National Science Foundation. "A multi-physical framework for curved-crease deployable structures," \$138,000 (funded), May 2018 May 2023. PI: Evgueni Filipov.
- 11. Office of Naval Research. "Curved folded sheets for stiff, anisotropic, and adaptable structures," \$322,181 (funded), Jan. 2018 Dec. 2020. PI: Evgueni Filipov.

PUBLICATIONS

Peer-reviewed journal articles

1. Woodruff, S. R. & Filipov, E. T. (2022). Bending and twisting with a pinch: Shape morphing of

creased sheets. Extreme Mechanics Letters, 52, 101656. https://doi.org/10.1016/j.eml.2022.101656.

- Woodruff, S. R. & Filipov, E. T. (2020). Bar and hinge model formulation for structural analysis of curved-crease origami. *International Journal of Solids and Structures*, 204-205, 114-127. https://doi.org/10.1016/j.ijsolstr.2020.08.010
- Woodruff, S. R. & Filipov, E. T. (2020). Curved creases redistribute global bending stiffness in corrugations: Theory and experimentation. *Meccanica*, 56(6), 1613-1634. https://doi.org/10.1007/s11012-020-01200-7

Peer-reviewed conference proceedings

 Woodruff, S. R. & Filipov, E. T. (2018). Structural analysis of curved folded developables. 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, 9780784481899, 793-803. https://doi.org/10.1061/9780784481899.075

PRESENTATIONS

Plenary presentations

- 1. Woodruff, S. R. (2024, October). Unlocking shape and stiffness: How curved creases enhance thinsheet structures [Conference presentation]. IX Virginia Soft Matter Workshop, Harrisonburg, VA, United States.
- Woodruff, S. R. & Filipov, E. T. (2018, April). Structural analysis of curved folded developables [Conference presentation]. ASCE International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Cleveland, OH, United States. Student paper award finalist.

Symposium presentations

- Jenkins, N. W. & Paz-Soldan, V. & Pelham, L. G. & Woodruff, S. R. (2024, October). Building a 2D waveguide to assess an active, origami-inspired acoustic metamaterial [Conference presentation]. IX Virginia Soft Matter Workshop, Harrisonburg, VA, United States.
- 2. Woodruff, S. R. (2024, February). *The power of Excel in engineering* [Conference presentation]. 2024 KEEN National Conference, Austin, TX, United States.
- Filipov, E. T., Woodruff, S. R. & Patil, H. (2022, August). Functional shape-morphing origami [Conference presentation]. 16th International Symposium on Functionally Graded Materials, Hartford, CT, United States.
- 4. Woodruff, S. R. & Filipov, E. T. (2022, May). Shape-fitting origami with curved creases and pinches [Conference presentation]. ASCE Engineering Mechanics Institute Conference, Baltimore, MD, United States.
- 5. Woodruff, S. R. & Filipov, E. T. (2021, March). Torsion and bending of curved-crease origami: Linking crease pattern geometry to beehavior [Conference presentation]. ASCE Engineering Mechanics Institute International Conference (online).
- 6. Filipov, E. T. & Woodruff, S. R. (2020, October). *Curved creases enhance the bending rigidity* of folded sheets [Conference presentation]. Society of Engineering Science Conference (online).
- Woodruff, S. R. & Filipov, E. T. (2020, April). Curved creases redistribute global bending stiffness in corrugations [Conference presentation]. ASCE Engineering Mechanics Institute International Conference (online).
- 8. Woodruff, S. R. & Filipov, E. T. (2019, June). Functional anisotropy: Exploiting the mechanics of curved-crease origami systems [Conference presentation]. ASCE Engineering Mechanics Institute Conference, Pasadena, CA, United States.
- 9. Filipov, E. T. & Woodruff, S. R. (2019, May). Mechanics and dynamics of reconfigurable curved-

crease origami arrays [Conference presentation]. Acoustical Society of America Annual Meeting, Louisville, KY, United States.

- Filipov, E. T. & Woodruff, S. R. (2019, March). Exploring the mechanics of curved-crease origami with a discrete bar and hinge [Conference presentation]. Bulletin of the American Physical Society, Boston, MA, United States.
- Filipov, E. T. & Woodruff, S. R. (2018, May). The mechanics of folding curved-crease origami [Conference presentation]. ASCE Engineering Mechanics Institute Conference, Cambridge, MA, United States.

Poster presentations

1. Woodruff, S. R. & Filipov, E. T. (2021, October). Twisting flat surfaces using curved creases and local pinching [Conference poster]. Society of Engineering Science Annual Conference (online).

UNIVERSITY SERVICE ACTIVITIES

Co-Chair of Assessment Committee Department of Engineering, James Madison University	2025 - Present
Search Committee Member Department of Engineering, James Madison University	2024 - 2025
Diversity Council member College of Integrated Science and Engineering, James Madison University	2024 - 2025
Community-Based Learning Collaborative Fellow Office of Community-Based Learning, Washington and Lee University	2022 - 2023

EXTERNAL SERVICE ACTIVITIES

ACCESS (formerly XSEDE) Allocation Review Committee member 2022 – Present National Science Foundation, Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program

Civil and Environmental Engineering Panel reviewer	$2023 - \mathrm{Present}$
Netional Colored Device	

National Science Foundation

Ad hoc journal reviewer

Additive Manufacturing; Cellulose; Frontiers in Physics; International Journal of Mechanical Sciences; International Journal of Solids and Structures; Mechanics Research Communications; Scientific Reports; Technology | Architecture + Design; Thin-Walled Structures.

PROFESSIONAL MEMBERSHIPS AND AFFILIATIONS

American Society for Engineering Education (ASEE) Member	2023
Society of Engineering Science (SES) Member	2021
Engineering Mechanics Institute (EMI) Member	2019

2022 - Present

Sigma Xi Honor Society Associate member	2018
Out in Science, Technology, Engineering, and Mathematics (oSTEM) Member	2017
American Society of Civil Engineers (ASCE) Member	2014
NON-ACADEMIC WORK EXPERIENCE	
 Infrasense, Inc. Woburn, MA - Junior staff engineer/GIS specialist Worked as the GIS expert in a team within a nondestructive testing (NDT) con Designed and managed a database on NDT data for roads and bridges within a portation Department, District 6. Worked at the vanguard of a new type of project for both the company and government. Aided in decision making about how to represent data for effective use. 	2016 – 2018 mpany. the Idaho Trans- the Idaho state
 Structural Integrity Engineering Group, Inc. Medford, MA - Engineer's assistant/drafter Drafted and checked technical drawings and met with clients. Conducted field work investigations of structural projects. Experienced in residential and commercial environments on a variety of project 	2014 – 2015 sizes.
Fundamentals of engineering exam (engineer in training)	2017

Fundamentals of engineering exam (engineer in training)

The National Council of Examiners for Engineering and Surveying

(Last updated on May 7, 2025)