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Abstract

In this letter, we introduce a unique behavior seen in creased sheets where localized changes in the folding
(i.e., a pinch) result in global bending and twisting deformations. Using isometric deformation theory, we identify
the connections between pinching, crease curvature, and crease torsion that begin to explain the shape-morphing
behavior. Given the limitations of isometric deformations, we expand our understanding of the behavior using a
mechanics-based bar and hinge model of creased sheets, where the sheet is allowed to stretch. With this tool, we
found that the increase in crease curvature and torsion due to pinching are proportional to the curvature of the
crease before folding and that curved creases facilitate the bending and twisting. Additionally, we explored the
bending and twisting of sheets with more than one crease. We found that sheets with an odd number of creases
generate less intense twisting than those with an even number of creases, even when the creases are straight.
The number of creases had little effect on the pinch-induced bending of the origami. The stiffness of the sheets
had little effect on the amount of bending and twisting, but greater spacing between the creases resulted in more
bending with little effect on the twisting. Based on these results, we created a framework to design crease patterns
to have desirable bending and twisting that can be coupled or not, and demonstrated this programmability with
simulations and by pinching physical prototypes. Our findings enable shape morphing of creased sheets with a
low-complexity input and a versatile output.
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1. Introduction

Shape-morphing is the ability to change orientation or geometry in order to alter the intrinsic properties of the
system for some functional advantage. Morphing from one configuration to another is achieved using kinematic
rotations and translations, mechanical deformations, or a combination of the three. Shape morphing is a founda-
tional property of emerging smart and adaptable structures that use sensors to detect the environment then adapt
to that state using actuation. Shape-morphing systems can be found in nature [30, 34] and in a variety of engineer-
ing fields, including biomedical engineering [2, 17, 21], aerospace engineering [7, 16], resilient and sustainable
infrastructure [4, 11, 14], metamaterials [31, 36], and soft robotics [18, 19, 24, 33].

Implementation of shape-morphing systems in technology faces significant challenges. For instance, shape-
morphing often requires expensive materials (e.g., shape-memory alloys or shape-memory polymers) and dis-
tributed actuation. Thus, using few and simple actuators is preferred to reduce cost and simplify fabrication [3].
Furthermore, when multiple actuators or distributed actuation are used, controlling the shape of the system be-
comes increasingly complex. And many existing shape-morphing materials and structures can deform in only
one way, limiting the range of shapes the system can attain. Additionally, the parameters determining the final
deformed shape can be highly coupled and lead to difficult design frameworks.

Concepts from origami (i.e., folding of thin sheets) and kirigami (i.e., cutting of thin sheets) have inspired
novel shape-morphing systems. The advantages of these approaches include simple manufacturing (design and
fabrication can start from a flat state), scale independence, and achievable large deformations without permanent
damage. Examples of shape-morphing origami and kirigami include adaptable grippers for robotics [40], dynamic
façades, locomotive robots inspired by pelican eels [20], and resilient drones inspired by dragonfly wings [27].
However, many origami- and kirigami-inspired systems are limited by the disadvantages experienced by existing
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Figure 1: The effects of pinching on a curved-crease polyester sheet. (a) A creased annulus sector is folded and has some curvature. (b)
When pinched at the middle, the structure bends with greater curvature (the unpinched reference shape is shown with dashed lines). (c) When
unpinched, this creased sheet lies flat on the surface and exhibits no twisting. (d) When pinched, the ends of the structure lift, demonstrating a
global twisting.

shape-morphing systems explained above (such as requiring multiple actuators), and these structures are also
sensitive to imperfections [25].

Beyond the traditional straight-crease origami, curved-crease origami allows folding of thin sheets about ar-
bitrary curves [9]. With curved-crease origami, the sheets between creases always bend upon folding, combining
kinematics with deformation mechanics [10]. Designs with curved creases have allowed for unique, tunable stiff-
ness properties [38, 41] and bistable behaviors [6], showing potential for shape morphing using these systems. In
this letter, we explore the effect of pinching on curved-crease sheets, where intense folding is applied to a small
portion of the crease using a local actuation. Figure 1 shows a creased, circular annulus sector that is folded from
polyester sheets (brand name Dura-Lar). When a single pinch is applied at the middle of the structure, it experi-
ences large bending deformation in-plane (i.e., in the xy-plane). Furthermore, we see that the same pinch results
in visibly large twisting deformations and a large displacement out-of-plane (in the z-direction).

These curved-crease sheets are capable of significant shape-morphing that include bending and twisting using
a single pinch. This deformation is fully reversible, can be prescribed using intuitive crease pattern design, and
results in a decoupled, bimodal response with tunable deformation magnitude and sign. In this letter, we intro-
duce the geometric features of curved-crease sheets and isometric theory that form a basis for thinking about how
pinching causes deformations (Section 2). With key limitations to isometric theory, we supplement our under-
standing with a mechanics-based numerical model that allows stretching, and with geometries specifically chosen
to help explain the bending and twisting of these structures (Section 3). In Section 4, we investigate the effect
that pinching has on the curvature and torsion of a crease that results in global bending and twisting of the struc-
ture. We also explore the parameters of origami with more than one crease and how those features affect global
twisting and bending. We conclude with a framework for generating tunable bending and twisting, show example
crease patterns with desirable behaviors, and present conceptual applications for these shape-morphing systems
(Section 5).

2. Theory

2.1. Geometry of curved-crease sheets
In order to understand the relationship between the crease pattern and the effects of pinching, we start by

identifying the relevant features of the geometry. An origami structure can be thought of as a set of creases
connected by sheets in three dimensions. The crease can be reduced to a parametric space curve in Cartesian
coordinates, c = {x(u) y(u) z(u)}, where u is the parameter indicating position along the curve (see Figure 2). In
this letter, we consider only curves that are at least three-times continuously differentiable, and we do not consider
creases that intersect within the sheet.

The crease, represented as a space curve, will have two important properties that describe its shape. The first
is the curvature of the crease, κ. Curvature measures the degree to which the crease bends away from its tangent,
locally, and can be calculated as,

κ =
|c′ × c′′|
|c′|3

, (1)

where (′) and (′′) indicate first and second differentiation with respect to, u, respectively, and (| |) is the l2 norm of
the vector inside the lines [22].

The second property of the crease we are interested in is its torsion, τ. Torsion measures the degree to which
the crease turns away from its osculating plane (see tn-plane in Figure 2(b)), locally, and can be calculated as,

τ =
(c′ × c′′) · c′′′

|c′ × c′′|2
. (2)
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Figure 2: Origami can be represented with surfaces connected to a space curve. (a) The deformed shape of creased sheets can be described
using the dihedral angle, ϕ, and the generator angles showing the orientation of local sheet bending, γL and γR. (b) With the crease as a space
curve, c, we can determine the curvature of the crease as the reciprocal of the radius of the osculating circle and the torsion as the rate at which
the osculating plane, tn-plane (or the normal vector, n), twists about the tangent, t (defined at each point along the crease).

Here, (×) indicates the cross product, (·) is the dot product of the vectors, and (′′′) indicates the third derivative
with respect to u [22].

The curvature and torsion describe the local shape of the crease and give insight to the global shape of the struc-
ture. We will use these equations to calculate the curvature and torsion of the creases before and after pinching.
Because we will use a discrete numerical model (Section 3.1), we estimated the derivatives using a finite-difference
calculation that provides a reasonably high-accuracy estimation (errors are of order O(∆u4)).

Another important geometric feature of origami structures is the dihedral angle of the crease, ϕ. The dihedral
angle describes the angle between the sheets extending perpendicular from the crease tangent (see Figure 2(a)),
defined at each point along the crease. To prevent the sheets from intersecting upon folding, the dihedral angle is
limited to the domain, 0 ≤ ϕ ≤ 2π [rad]. Figure 3(a) shows examples of the dihedral angle in this domain and
Figure 2(a) shows the dihedral angle on a folded sheet. In this paper, all creases with ϕ ∈ [0, π) [rad] are mountain
creases (indicated with a lighter, blue color) and creases with ϕ ∈ (π, 2π] [rad] are valley creases (indicated with
a darker, purple color). Notice that when ϕ = π [rad], the sheet is flat.

The first derivative of the dihedral angle with respect to the crease parameter, u, is called the fold rate, ϕ′.
When the crease is pinched, ϕ′ , 0. We use the fold rate to quantify the pinch, and this quantity will be useful in
predicting the torsion generated in a crease after pinching.

2.2. Isometric theory of curved-crease origami

The properties given in Section 2.1 describe the geometry of the crease at a specific state or configuration. In
order to map between different configurations of the crease geometry or deformation states, we can assume that
deformations of the origami exist only as bending of the sheets and crease. This is called the isometric deformation
assumption. Under this assumption, there is no stretching in the sheet or the crease. This is a reasonable assumption
given that the in-plane stiffness of the sheet is of order O (t/l), the bending stiffness of the sheet is of order O([t/l]3),
and that t/l << 1, where t is the thickness of the sheet and l is the characteristic length [28]. In summary, bending
usually requires less energy than stretching, so the system will tend to bend and follow isometric deformations.

From the isometric deformation assumption, we can derive several relationships between the geometry of the
crease before folding and after pinching. These equations help us predict the behavior of origami after pinching
and set a theoretical basis for why curved-crease origami twist and bend when pinched.

The first relationship we consider describes how the curvature of a crease changes as it is folded. This
curvature-folding relation is,

κ =
κ0

sin ϕ/2
, (3)

where, κ is the curvature of the crease after folding (see Figure 2(b)) and κ0 is the curvature before folding (when
ϕ = π [rad]) [12, 15, 23]. This equation is plotted as a solid line in Figure 3(a) for a crease with κ0 = 0.005 [mm−1].
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This relationship shows that as the crease is folded from a flat state, the curvature of the crease will increase as
long as κ0 > 0 (according to isometric deformation theory).

The second relationship we consider describes the torsion of the crease as it is folded. This relationship can be
described with,

τ =
1
2
κ0 cot

ϕ

2
(cot γL + cot γR) , (4)

where, γL and γR are the generator angles on the left and right sides of the crease, respectively (see Figure 2(a)) [23].
The generator angles describe the orientation of bending in the sheets adjacent to the crease and are defined as the
angle between the crease tangent, t, and the flat ruling on the surface (i.e., a line segment extending from the crease
across the sheet, which exists for all developable surfaces with non-zero mean curvature). The generator angles
are limited to the open interval, (0, π) [rad]. The direction of bending in the sheet will align with the direction of
the generator. Note that when γL + γR = π [rad], torsion vanishes.

The third relationship is similar to the last, but describes the fold rate of the crease as it is folded. This rela-
tionship is,

ϕ′ = −sκ0 cot
ϕ

2
(cot γL − cot γR) , (5)

where s = |c′| is the speed of the curve [23]. Again, the fold rate depends on the bending of the sheets adjacent to
the crease. Note that when γL = γR, the fold rate vanishes.

When we combine Equations 4 and 5, we derive a relationship between the crease torsion and the fold rate.
Namely,

τ = −ϕ′
(

cot γL + cot γR

2s
[
cot γL − cot γR

] ) . (6)

We see that torsion can only occur when the fold rate is nonzero. A pinched crease will have a nonzero fold rate;
thus, non-zero torsion can occur in pinched structures.

It is difficult to predict what the generator angles will be after folding because the local bending of the sheets
depends on the adjacent creases, the forces applied to the sheets, and the restraints on the structure. Because
Equation 6 depends on the generator angles, we cannot be certain that pinching will generate torsion or to what
degree. Currently, there is no explicit relationship linking the generator angles to the boundary conditions and
crease pattern. However, we can implicitly determine the deformed shape of the origami sheets using an energy
minimization scheme [5]. Alternatively, we can use a mechanics-based analysis to determine the deformed shape
of the origami, as we describe in Section 3.1. Using this method, we can better understand exactly how torsion is
related to the curvature of the creases, the dihedral angle, and the fold rate.

For now, we know that crease torsion can only exist when: (1) the flat crease is curved (κ0 , 0), (2) the crease
is folded away from a flat state (ϕ , π [rad]), and (3) the crease is allowed to diverge from its originally flat plane
(there can be no boundary conditions preventing twisting). Curvature will always exist for an initially curved
crease.

2.3. Limitations of isometric theory
From Equation 3, isometric deformation theory tells us that as a curved crease approaches complete folding

(ϕ → 0 or ϕ → 2π [rad]), the curvature of that crease will approach infinity. Intuitively, this seems incorrect.
Indeed, when a paper prototype of a curved-crease origami is folded completely, the sheets appears to flatten out,
rather than curve infinitely. This flattening suggests that the isometric deformation assumption fails to describe the
deformed shape of real origami structures, where stretching is possible, at least for some domain of dihedral angles.
And pinching does result in near-complete folding of a crease. Thus, if we are to examine how pinching affects
the shape of origami structures, we need to understand the limitations of the isometric deformation assumption
and suggest a more versatile means of determining the deformations of curved-crease origami.

An alternative to isometric theory is to perform a mechanics-based analysis on an origami structure. We use
a numerical model to simulate the folding and pinching of origami, which is described in Section 3.1. This nu-
merical model calculates the equilibrium state of the origami structure in response to forces and/or moments that
generate folding. The model includes bending, folding, and stretching deformations, allowing for possible in-plane
deformations ignored in isometric theory. The numerical model uses elastic elements with a nonlinear geometric
response. We use this numerical model to explore the performance of the isometric deformations assumption under
different degrees of folding.

Figure 3(a) shows the normalized curvature, κ/κ0, of a crease with κ0 = 0.005 [mm−1] after folding with the
corresponding dihedral angle, ϕ. The origami used in Figure 3 is a circular annulus sector that is creased along its
mid-radius to a dihedral angle, ϕ, which is held constant along the crease length (see Figure 3(d)(i)). We see that
the curvature ratio aligns with the isometric theory for moderately folded dihedral angles (π/3 ≤ ϕ ≤ 5π/3 [rad]).
However, for more complete folds, the numerical model starts to diverge from the isometric theory.

4



ϕ = π [rad] = 180°

ϕ = π/3 [rad] = 60°

ϕ = π/50 [rad] = 3.6°

ϕ = 0 [rad] = 0°F
o
ld

 f
ro

m
 f

la
t 

to
 c

o
m

p
le

te
ly

 f
o
ld

ed

π/60 π/3 π/2 2π/3 5π/6 π

U
 [

N
-m

m
]

ϕ [rad]

0

2

4

6

8

10

12

π/6 π/3 π/2 2π/3 5π/6 π0.00

0.10

0.20

0.30
Stretching energy
Bending energy

30°0° 60° 90° 120° 150° 180°

π/500 π/25 3π/50 2π/25 π/10

ϕ [rad]

0

5

10

15

20

κ
/κ

0

Iso. theory

3.6°0° 7.2° 10.8° 14.4° 18°

cs = 1.5
cs = 1.0
cs = 0.5

Increasing 

in-plane stiffness

Iso. theory

Bar & hinge

U
n

fo
ld

ed
 s

ta
te

π/30 2π/3 π 4π/3 5π/3 2π

κ
/κ

0

ϕ [rad]

0

1

2

3

4

5

6
60°0° 120° 180° 240° 300° 360°(a) (b)

(c) (d)
(i)

(ii)

(iii)

(iv)

Figure 3: Isometric deformation of thin sheets is a valid assumption for a limited range of folding, but is insufficient for pinching folds. (a) The
curvature of a curved-crease annulus before, κ0 = 0.005 [mm−1], and after, κ, folding is the same for the isometric theory and a bar and hinge
model in a large domain of dihedral angles (the images below the x-axis show the cross-section of the origami and the corresponding dihedral
angle of the annulus sector at some point along its length, with the tangent vector pointing into the page). (b) For dihedral angles approaching
complete folding, the curvature peaks and falls to zero with the numerical model, rather than approaching infinity. The stiffness of the sheet
in stretching (multiplied by a factor, cs) impacts the change in curvature, suggesting that in-plane deformations dominate at extreme dihedral
angles. (c) The strain energy in the bar and hinge model shows that the stretching energy dominates for extreme dihedral angles, defying the
assumption that deformations are predominantly in bending. (d) The folded shape of origami shows crease curvature increases as it is folded,
peaks, then flattens to avoid infinite curvature once the dihedral angle is zero.
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Figure 3(b) shows the normalized curvature, but for dihedral angles close to complete folding (0 ≤ ϕ ≤ π/10
[rad]). We see that as the dihedral angle approaches zero, the curvature of the numerical model is significantly less
than what isometric theory predicts. After π/50 [rad], the curvature of the model starts to decrease, and the crease
flattens when completely folded (see Figure 3(d)). We changed the stretching stiffness in the mechanics-based
model by a factor of cs to see how the crease curvatures changed, and saw that the stiffer models (cs = 1.5) would
curve more than the models with less stiffness (cs = 0.5), but all mechanics-based models eventually flattened to
zero curvature.

When we determine the shape of origami after folding using a mechanics-based model and allow the sheets
to stretch, we find that approaching complete folding of curved-crease origami results in flattening, rather than
infinite curvature. Because the origami flattens as it is completely folded, and the normalized curvature is related
to the stretching stiffness of the model, this indicates that stretching is important for the sheets in highly folded
configurations. Indeed, Figure 3(c) shows that as the dihedral angle approaches zero, the bending strain energy
decreases and stretching strain energy increases. Effectively, stretching and flattening the sheet becomes more
energetically efficient than it is to bend the sheet to an infinite curvature. This result holds for the other folding
extreme as ϕ → 2π [rad]. Using a finite-element model with identical material properties and dihedral angles,
we found that in-plane deformations also occur in the sheet and are located near the crease, supporting our claim
that isogeometric theory fails to capture the deformation of origami made from elastic sheets at extreme dihedral
angles, where stretching occurs.

From these results, we know that isometric deformations are a reasonable assumption for moderately folded
origami (π/3 ≤ ϕ ≤ 5π/3 [rad]), but we should expect stretching deformations to occur for dihedral angles outside
of this domain; specifically, at a region near where a crease is pinched. We can use the isometric relationships
to gain insight on how real origami structures work, especially for folding, but we need to use a more versatile
method to explore the effects pinching has on a structure.

3. Materials and methods

3.1. Bar and hinge modeling of creased sheets
In order to supplement the isometric theory for exploring how pinching affects the deformed shape of creased

sheets, we used a numerical model to simulate the folding and pinching of thin sheets. This method, called the bar
and hinge model [13, 26, 32], represents sheet deformations using three elements. The first is a three-dimensional
truss element called a bar, which combined with other bars captures the in-plane deformations of the sheet (i.e.,
stretching and shearing). The second element is a hinge, or a rotational spring, that captures bending deformations
of the sheet by lumping the bending into discrete rotations. The third element is also a hinge, but captures crease
rotations due to folding.

The combination of these three elements allows us to model the deformation of origami structures under
folding and post-fold loading (e.g., a pinch). Each element is assigned a stiffness value, which has been calibrated
to the physical stiffness of thin sheets based on the mesh size, thickness of the sheet, and the sheet material
properties [37]. The bar and hinge model arrives at a solution using a Newton-Raphson solver, accommodating
geometric non-linearity [39]. The bar and hinge model can capture the deformation of curved-crease origami with a
reasonably high accuracy. Indeed, comparing the deformed shape of several hand-folded paper sheets to simulated
bar and hinge models gave an average Hausdorff distance error of 0.4% the maximum length of the models [37].
And, because the bar and hinge model uses fewer elements than a finite elements model, convergence occurs
in less time (in the geometries depicted in this paper, usually less than ten seconds) and with a greater rate of
successful convergence.

We use the bar and hinge model to capture the deformed shape of the folded and pinched sheets described
below. The data we collect from the models are used to calculate the torsion and curvature of the creases and the
global twisting and bending of the structure.

3.2. Model geometries and parameters
All of the curved-crease sheets studied in this work shared certain geometric features and parameters. First,

all of the creases and edges were uniformly spaced, meaning the distance between each crease and between the
creases and the edges were some set distance, w. Using uniform crease spacing eliminates twisting due to folding,
a source of twisting distinct from the pinch-induced twisting investigated here, because uniformly spaced creases
fold to a mostly torsion-free configuration (small amounts of torsion will occur near the ends of the creases, but
this torsion is minor [5]). Next, all models were restrained so that the sheets were free to fold without generating
noticeable twisting and could be freely pinched while maintaining global stability. All restraints lie on the line
extending from the pinch force in the flat plane (at the midpoint along each crease). Finally, every model was
designed from a flat crease pattern, ensuring developability so the origami could be easily fabricated.

6



u

1/�0 

u

u

Initial (flat)

�0 L = 4�0 L = 2�0 L = 0

L = 100 [mm]

w = 5 [mm]

t = 0.5 [mm]

0 � u � L

Folded Pinched

w
w

(a)

(b) (c)

(d)

Figure 4: Single-crease, annulus sectors share common geometric properties. (a) The structure starts as a flat crease pattern with a constant
initial curvature, κ0. (b) As the structure is folded, the curvature increases. (c) After folding, the sheet is then pinched at the mid-length and the
curvature and torsion are calculated. (d) Annulus sectors with different initial curvatures.

The first set of model simulations explored the curvature and torsion that occurs from pinching on a single-
crease sheet structure. For these analyses, the crease pattern is a circular annulus sector creased at mid-radius (see
Figure 4). Each of the creases had a constant length, L = 100 [mm], were folded to ϕR = π/2 [rad] (90◦), were
spaced w = 5 [mm] from the edges, and the stiffness factor of the creases was L∗ = 2 [mm] [13]. The sheets
had constant thickness, t = 0.5 [mm] and elastic modulus, E = 4000 [N-mm]. The creases were pinched to the
dihedral angles shown in Figure 5(a), with a minimum dihedral angle, ϕp, of π/14 [rad] (12.86◦). This minimum
dihedral angle was chosen to ensure model convergence and to avoid local instabilities, such as sheet wrinkling,
which are sometimes seen in models with high initial crease curvature. The curvature of the creases before folding,
κ0, varied from zero to 0.05 [mm−1] (see example unfolded shapes in Figure 4(d)).

For the second set of analyses, we used models with multiple creases to see the effects of other factors that
become important with more than one crease (i.e., number of creases, sheet stiffness, and crease spacing). For
these simulations, the geometry was again a creased annulus sector where the crease with the lowest curvature
was a mountain crease, had a length, L = 100 [mm], and all references to crease curvature are the curvature of
that crease. The creases alternate between mountain and valley folds where the mountain creases were folded to
ϕm = π/2 [rad] (90◦), and the valley creases were folded to ϕv = 3π/2 [rad] (270◦). The creases were pinched
so that the dihedral angles were π/18 [rad] (10◦) away from being completely folded. The stiffness factor of the
creases was L∗ = 2 [mm]. The thickness of the sheets was, t = 0.5 [mm], except for the analyses varying sheet
stiffness. The spacing between the creases and the edges was w = 5 [mm], except for the simulations varying
crease spacing, and the number of creases was three, except for the analyses varying this value. Each of the
analyses were run with three different initial crease curvatures (κ0 = 0, 0.005, 0.01 [mm−1]).

4. Results

4.1. Local effects of pinching

Curvature and torsion describe the manner in which a curve is moving through space, relative to nearby points
on the curve. The curvature tells us how the curve is bending and torsion tells us how the curve is twisting, both
on a local scale. Curvature and torsion do not directly explain the total amount of bending and twisting. But, in
general, greater curvature and greater torsion will lead to more bending and twisting, respectively. As an analogy,
curvature and torsion are to bending and twisting as strains are to deformations. Understanding the local curvature
and torsion generated from pinching will help link the crease pattern parameters to global deformations.

Figure 6(a) shows the curvature along the length (i.e., the curvature profile) of an annulus sector creased at
mid-radius and pinched at mid-length. The curvature profile was found for crease patterns with varying initial
curvatures. We see that for all crease patterns with non-zero initial curvature, the curvature of the crease increases
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drastically just outside the pinch location then tapers down towards the curvature we expect from the folded, non-
pinched shape. Within the pinched zone (i.e., the portion of the crease length where pinching forces were applied),
the curvature is significantly reduced. This reduction occurs because the high degree of folding does not allow
isometric deformations. The pinching causes local flattening and a reduction in curvature (as shown in Figure 3).
We see that pinching generates a local, highly curved portion of the structure that acts as a hinge and generates
global bending. Note that towards the ends of the crease (u/L ≈ 0 and u/L ≈ 1), there are errors in the curvature
calculation that stem from the finite difference approximations of the derivatives. These errors do not affect the
results away from the ends.

For each initial curvature, the peak value, κp, was measured, with the location of this peak near the edge of
the pinched zone (indicated in Figure 6(a) with a dotted line). This peak curvature was plotted against the initial
curvature in Figure 6(b). We see that the peak curvature is proportional to the initial curvature of the crease,
indicating that greater local curvature from a pinch can be gained with higher initial curvatures.

Figure 7(a) shows the torsion along the length (i.e., the torsion profile) of the same circular creased annuli.
We see that pinching results in large crease torsion for creases with nonzero initial curvature. The torsion in the
crease peaks near the pinch, then tapers down to zero moving away from the pinch. Notice that the shape of the
torsion profile is similar to that of the fold-rate profile shown in Figure 5(b) (the vertical axes on this plot are
reversed to accommodate the negative relation between torsion and fold rate given in Equation 6). This similarity
between the fold-rate profile and the torsion profile suggest that the rate of change of the dihedral angle could be
useful for prescribing a desired torsion profile. Additionally, the magnitude of torsion appears to increase with the
initial curvature of the crease, suggesting that the shape of the torsion profile can also be scaled by altering the
initial curvature of the pinched creases. Again, the torsion values near the ends of the crease are erroneous due to
approximation errors and should not be considered an accurate reflection of the crease torsion.

Figure 7(b) shows how the peak torsion, τp, varies with the initial curvature of the crease. The peak torsion
was measured along the dotted, black line in Figure 7(a), just outside the pinch where the torsion profiles peak.
We see that the peak torsion is proportional to the initial curvature of the crease. This confirms that the amount of
twisting in the structure can be prescribed by varying the initial curvature of the crease.

In these analyses, the creases were all folded to mountain folds, but the curvature and torsion of valley folds
will be the same (because curvature and torsion are intrinsic properties of the curve and do not vary with the
coordinate system). The global bending and twisting do depend on the mountain/valley crease assignment, but
are related to each other. We see from the inset deformed shapes in Figure 6(b) that pinching the sheets increases
the curvature of the crease, resulting in bending towards the center of curvature. Bending towards the center of
curvature will occur for both mountain and valley creases. For twisting, we see in Figure 7(b) that the torsion of the
crease causes the structures to twist downward due to the pinch (for the case where the mountain crease lies on top
of the sheets). For a valley crease, the origami would twist upward. Formally, pinching a curved crease will result
in the sheet to move opposite the direction of the binormal vector, or the vector describing the positive normal to
the osculating plane (see the tn-plane in Figure 2(b)). In more relatable terms, the origami will twist away from
the direction the crease is pointing, where in this case, mountain creases point upward and valley creases point
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Figure 8: Unlike torsion, the global twisting of a multi-crease system depends on the coordinate system. (a) At each point along the length of
the crease, a mid-plane is calculated, splitting the origami into an upper and lower portion. (b) The mid-plane with respect to the cross-section.
The twist angle, θ, is calculated from the xy-plane, and the twist angle at the ends are used to measure global twisting.

downward.

4.2. Deformations of pinched sheets with multiple creases

When sheets are folded with more than one crease, the deformations of the creases become coupled, and
properties of the sheet become important to the global behavior [8, 35]. These parameters of interest include the
number of creases in the crease pattern, the stiffness of the sheet determined from its thickness and elastic modulus,
and the spacing between the creases. We varied the aforementioned parameters and found the deformed shape of
pinched origami with multiple creases and measured the effect on global bending and twisting of the structures.

To measure bending and twisting of multi-crease origami, we start by finding the mid-plane that cuts the cross-
section through the middle (see Figure 8). The mid-plane is calculated at each point along the length of the origami
by forming a line between the point that lies between the edge and the first crease and the point between the last
crease and the adjacent edge. These lines are connected to form a surface representing the mid-plane. The bending
angle for the multi-crease origami is the angle between the lines extending from the center of the mid-length of
the mid-plane (the location of the pinch) to the center of the mid-plane at the ends of the structure. To measure
the bending behavior due to pinching, the bending angle was calculated after folding the origami, β f , and after
pinching, β, and the difference between the two was calculated (see Figure 11(c)). The change in twisting angle,
θ f − θ, was measured as the angle between the mid-plane at the right end of the structures and the flat plane
(xy-plane, where the unfolded origami lies) for the folded (θ f ) and pinched (θ) configurations.

Figure 9(a) shows the change in bending angle from pinching the origami with different number of creases
for three different initial curvatures. The reported initial curvature is for the topmost crease, which has the lowest
curvature of all creases in the sheet. We see that the number of creases is not strongly related to the amount
of bending. Because all the creases share a center of curvature, all creases bend towards that direction without
disruption from adjacent creases.

Figure 9(b) shows that the number of creases has a large effect on the twisting of the structure. The first trend
we see is the difference between origami with an even number of creases and those with an odd number of creases.
Origami with an odd number of creases will exhibit a smaller, positive twisting angle, while origami with an even
number of creases will twist in the negative direction significantly more. The different twisting for even and odd
creases holds for the origami with zero initial curvature, but, the torsion for odd-numbered creases is always zero.
Figures 9(c-d) show cross-sections of the two- and three-crease geometries at the pinch and at the right end of the
structure, along with photographs of prototypes with the same crease patterns. All physical prototypes presented in
this paper are made from polyester sheets supplied by Dura-Lar and have a thickness of 0.127 [mm]. For both the
two- and three-crease models, the outermost sheets barely rotate away from the pinch. Because for the two-crease
model, the sheets are parallel, pinching causes the mid-sheet to rotate away from the pinch, causing the global
twisting. For the three-crease model, the outermost sheets are mirrored, and the center sheets do not rotate away
from the pinch. The different twisting behavior for an even versus odd number of creases holds for origami with a
greater number of creases and for those with non-zero curvature as well.

Another trend that we see when varying the number of creases requires separating the even- and odd-crease
origami and looking at each individually. Looking at the twist angles separately, we see that as more creases are
added, the magnitude of twisting decreases, suggesting that origami with a high number of creases (e.g., seven)
will show little twisting, especially if there are an odd number of creases.

Figure 10(a) shows the change in bending angle for a three-crease model when the stiffness of the sheet is
varied. We see that the sheet stiffness has a small effect on the amount of bending in the origami. The effect is
most pronounced for sheets with low stiffness (Et3 < 2000 [N-mm]) and higher curvature. However, the overall
effect is small with only an increase of 9.80% for halving the stiffness from 1000 [N-mm] to 500 [N-mm] (for

10



θf - θ

β

� 
- 
β
 [

ra
d
]

Number of creases

θ

� 
- 
θ
 [

ra
d
]

8°

π/45

2π/45

0

4°

0°

-4°

-8°

-12°

-16°
1 2 3 4 5

-2π/45

-π/15

-4π/45

-π/45

π/3 60°

5π/18

2π/9

π/6

π/9

π/18

0

50°

40°

30°

20°

10°

0°

�0 = 0.000 [mm-1]
�0 = 0.005 [mm-1]
�0 = 0.010 [mm-1]

(c) (i) (ii) (iii)

(ii) (iii)

(iv)

(d) (i) (ii) (iii)

(ii) (iii)

(iv)

(a)

(b)
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κ0 = 0.01 [mm−1]). A similar trend can be seen with twisting in Figure 10(b) with only an increase of 9.93% in
twisting angle change when reducing stiffness from 1000 [N-mm] to 500 [N-mm] (for κ0 = 0.01 [mm−1]).

The flexibility of the sheet will determine its compliance to the crease shapes (i.e., a more flexible sheet will
reconfigure to comply with the curvature and torsion of a crease than a stiffer sheet). However, the influence of
stiffness is small, and the bending and twisting are affected more by the shape of the origami (e.g., κ0).

The last multi-crease parameter we explored was crease spacing. Figure 11(a) shows the change in bending
angle versus the distance between the creases. We see here that bending is proportional to crease spacing. The
greater creases are spaced, the more bending we see. For twisting, greater crease spacing results in more twisting,
but the effect is non-linear and is less than with bending (see Figure 11(b)).

It is important to note that as the crease spacing increases, stretching (due to the extreme folding described in
Section 2.3) increases at the edges away from the creases. This stretching can result in local instabilities of the
sheet (e.g, wrinkling), seen in both the bar and hinge model and in physical, polyester prototypes. As such, there
is a practical limit to the crease spacing that depends on the material properties of the sheet.

5. Discussion

From the single and multi-crease analyses, we have a better understanding of the crease pattern and sheet prop-
erties that cause bending and twisting of uniformly spaced origami when pinched. We can use this understanding
to establish a framework for prescribing pinch-induced deformations to origami to meet the needs of an adaptable
system. We will then use this framework to create example crease patterns that display various combinations of
deformations.

5.1. Generating and tuning global bending

When origami is pinched, the curvature of the creases (for crease with non-zero initial curvature) increases near
the pinch. This increase in curvature generates a hinge that rotates the ends of the structure, causing the origami to
bend globally. The greater the initial curvature of the crease, the more it will bend upon pinching. When a curved-
crease origami is pinched, the bending is towards the center of curvature. Because the center of curvature is the
same for mountain and valley creases, pinching either type of crease will result in the same bending deformation,
even with multiple creases. The number of creases in a multi-crease pattern does not influence the magnitude of
bending, and a more flexible sheet will bend slightly more than a stiffer sheet, but stiffness has a minimal effect
on bending. Finally, multi-crease systems with a greater crease spacing will generate greater bending (until local
instabilities occur for large crease spacing).
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5.2. Generating and tuning global twisting

When curved creases are pinched, large torsion deformations appear near the pinch. The torsion peaks near
the pinch, then tapers off towards zero away from the actuation. This torsion, along with other factors, result in
global twisting in the structure. For origami with an odd number of creases, greater crease curvature will generate
greater twisting. Origami with an even number of creases will generate large amounts of twisting, but this larger
twisting is caused predominantly by the sheet arrangement, not the crease curvature. Mountain and valley creases
will generate torsion of an opposite sign, so a single mountain crease that is pinched will deflect in one direction
(the direction opposite the that of the crease’s binormal vector), and a valley crease of the same shape will deflect
in the other (where the binormal vector is flipped). Like bending, more flexible sheets twist slightly more than
a stiffer sheet. Again, the sheet stiffness has a minimal effect. Wider crease spacing will also generate greater
twisting, due to the lever arm that the sheets make between the creases.

5.3. Crease patterns for isolated or combined bending and twisting

With this framework, we can create crease patterns that display desired bending and twisting behaviors. Fig-
ure 12(a)(i) shows a crease pattern that, when pinched, experiences large twisting, but minimal bending deforma-
tions. The crease pattern has zero curvature near the center (where the pinch occurs) and has non-zero curvature
near the ends. This crease pattern also uses two creases, which will generate large twisting along the curved ends
of the origami. Figures 12(a)(ii-iii) show the effect of folding and pinching on this geometry, where there is no
global bending, but large twisting at the ends.

The second geometry we created displays only bending deformations when pinched. Figure 12(b)(i) shows a
crease pattern that has non-zero initial curvature everywhere, but has a large and odd number of creases (seven).
Figures 12(b)(ii-iii) show that pinching the structure results in significant bending with minimal twisting deforma-
tion.

Figure 12(c) shows the third geometry that displays neither bending nor twisting when pinched. The crease
pattern has zero initial curvature and an odd number of creases (five). Pinching this structure gives a neutral local
deformation in the middle, with no global deformations (see Figures 12(c)(ii-iii)).

The fourth and final geometry displays both bending and twisting due to pinching. Figure 12(d)(i) shows a
single-crease, annulus sector crease pattern with a non-zero curvature. Pinching this structure generates significant
bending and twisting deformations, as shown in Figures 12(d)(ii-iii).

These four geometries show only a small subset of possible crease patterns that will display isolated and
combined bending and twisting behaviors. By varying the initial crease curvatures, number of creases, and crease
spacing, the magnitude of these deformations can also be controlled, as needed.

Pinched shape-morphing origami have the potential to advance technology in a variety of fields, with appli-
cations requiring targeted changes in the shape of the mechanism with little actuation complexity. Pinching can
occur at any point along the length of a crease and with multiple pinches for applications in soft robotics, such
as a gripper (see Figure 13(a)). Additionally, a dynamic façade [1, 29] composed of curved-crease panels can
twist away from a building and bend to allow light in, as needed (see Figure 13(b)). Another potential application
of shape-morphing origami is adaptable, architected materials that require simple actuation, but high complexity

13



L
o
ck

ed
 k

n
ee

 p
o
si

ti
o
n

A
ct

iv
e 

k
n
ee

 p
o
si

ti
o
n

Open state

Grasp state

Front Side

F
o
ld

ed
, 
cl

so
ed

 s
ta

te

Front Side

P
in

ch
ed

, 
o
p
en

 s
ta

te

(c)(a) (b)Pinch grippers Exoskeleton jointAdaptive façade

Figure 13: Conceptual applications of pinch-actuated origami. (a) Pinches can be applied to curved-crease origami to generate intense bending
along the length of the crease to achieve grasping-type motions. (b) An origami façade can be adapted to optimize the heat and light entering
a building depending on internal and external conditions. Both bending and twisting motions can be achieved with a simple pinch. (c) A
curved-crease sheet with an odd number of creases (limited twisting upon pinching) could allow for an exoskeleton-type system that locks or
allows bending, as needed.

shape changes. Finally, our findings could support development of exoskeletons that can morph to the shape and
functional needs of the wearer in real-time and generate a hinge with a locked, high-stiffness state and an unlocked,
low-stiffness state using pinching (see Figure 13(c)). The adaptive stiffness for this type of pinched mechanism
was demonstrated in our previous work [37].

6. Conclusion

When creased sheets are pinched, the deformed shapes can bend and twist in desirable ways to achieve a
new, geometric state. Using pinching for shape morphing of creased sheets overcomes many of the obstacles
facing existing adaptable materials and structures. For instance, the inputs to the system are a single-degree-of-
freedom actuation that results in variable intensity bending and twisting that can be coupled or isolated and is
fully reversible. By limiting the number and distribution of actuation points, the shape-morphing system becomes
less complex and less expensive, requiring fewer actuation elements made from costly materials (e.g., shape-
morphing alloys/polymers or piezoelectric actuators). The control system for shape-morphing origami is relatively
straightforward, with the crease design and pinch location determining the magnitude and sign of global bending
and twisting.

Isometric deformation theory predicts the increase in curvature and torsion caused by pinching, but it limited
to moderate dihedral angles (π/3 ≤ ϕ ≤ 5π/3 [rad]) and requires understanding how sheet bending is linked
to the boundary conditions of the structure. Our results using a mechanics-based numerical models confirm that
origami with creases of higher initial curvature will generate greater curvature and torsion in the area surrounding
the pinch. However, the increase in curvature exists only outside the pinched zone, and the sheet will flatten at
the pinch (a result that isometric theory does not explain). These local behaviors affect the global deformation of
the structure. When a sheet is folded about more than one crease, the number of creases does not influence the
amount of bending seen in origami, but significantly affects the magnitude and sign of twisting. Origami with an
even number of creases will result in large, negative twisting, and origami with an odd number of creases will
result in smaller, positive twisting (for sheets with non-zero initial curvature). Looking at the even- and odd-crease
patterns separately, the fewer creases there are, the greater the twisting. Spacing between creases is also important
in prescribing the amount of bending and twisting generated from pinching. When the spacing increases, so does
the magnitude of bending and twisting. Sheet stiffness had a small effect on the amount of bending and twisting
generated from pinching, where more flexible sheets experience larger deformations.

In this letter, we have identified the potential of shape-morphing by pinching origami, and future research
would enhance the capabilities of these programmable systems. For example, we know that origami that is folded
about non-uniformly spaced creases can generate twisting without any pinching. Understanding the impact that
non-uniformly spaced creases has in conjunction with pinching could result in more varied shape morphing.
Additionally, future research could explore the behavior due to pinching origami at different and multiple points
along the length of the crease. With greater investigation of the range of motion of pinched origami, future research
could develop an inverse design scheme where origami can morph into target shapes using careful crease pattern
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design and placement of local actuation(s). Finally, curved-crease sheets have been shown to have unique and
programmable stiffness characteristics, so exploring stiffness tuning in conjunction with pinched shape morphing
could open up new potential capabilities.
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