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Abstract

In this paper, we present a method for simulating the structural properties of curved-crease origami through the use
of a simplified numerical method called the bar and hinge model. We derive stiffness expressions for three deformation
behaviors including stretching of the sheet, bending of the sheet, and folding along the creases. The stiffness expressions
are based on system parameters that a user knows before analysis, such as the material properties of the sheet and the
geometry of the flat fold pattern. We show that the model is capable of capturing folding behavior of curved-crease
origami structures accurately by comparing deformed shapes to other theoretical and experimental approximations of
the deformations. The model is used to study the structural behavior of a creased annulus sector and an origami fan.
These studies demonstrate the versatile capability of the bar and hinge model for exploring the unique mechanical
characteristics of curved-crease origami. The simulation codes for curved-crease origami are provided with this paper.
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1. Introduction

In their flat state, thin sheets offer little in terms of
design freedom and usability to engineers. Inspired by
origami artists, researchers have found ways to increase
the utility of these sheets by folding them about prescribed
creases. Examples of origami solving engineering problems
include lightweight and stiff deployable structures [1], med-
ical stents that can fold to a small form and unfold at vi-
tal points in the body [2, 3], and compactable solar arrays
which take up little room in a spacecraft during launch and
unfold to capture sunlight for power while in orbit [4, 5].

One set of origami-inspired designs, called curved-crease
origami, are created by folding thin sheets about arbi-
trary curves. The resulting three-dimensional shapes offer
a variety of favorable structural features including bista-
bility [6–8], storage of elastic strain energy in the bent
sheets [9], and tunable, global stiffness isotropy for corru-
gations [10]. In contrast to straight-crease origami, curved-
crease systems offer additional design freedom insofar as
the shape of the crease, and by extension, the shape of the
folded sheet, includes infinite permutations (see Figure 1
for examples). Such a broad set of designs could address
engineering problems as shown by [11–15].

As curved-crease origami are folded, both kinematics
and the mechanics of sheet bending must be considered to
describe the final deformed shape [16]. Furthermore, un-
derstanding the structural capacity and anisotropic stiff-
ness of curved-crease origami during and after folding re-
quires exploring the mechanics of the sheets beyond bend-
ing. The mechanics of straight-crease fold patterns such as

∗Corresponding author
Email address: filipov@umich.edu (Evgueni T. Filipov)

the Miura-ori are well understood [17, 18], but mechanics
literature has not explored curved-crease origami in great
detail.

Early work by Huffman [19] sought to describe the ge-
ometric features of curved-crease origami with further de-
velopment by Duncan and Duncan [20]. The mathematical
relationship between crease geometry and the shape of the
folded sheet requires knowing, a priori, unintuitive param-
eters such as the deformed shape of the crease and the
exact fold angle along the crease length. These relation-
ships are useful, but would not benefit a designer starting
from a flat fold pattern. Additionally, existing mathemat-
ical expressions for curved-crease folding apply to origami
with just one fold or a tessellation of similar folds. These
expressions do not work for origami with more than one
fold, in general. Another method involves modeling the
curved surfaces of folded sheets with Euler’s elastica and
reflecting the surface about mirror planes [21]. However,
this method does not necessarily allow for minimal energy
states like flattening near free edges. While theoretical
models like these are computationally efficient and elegant
in their formulations, applications are limited. Many of
the existing methods used to describe curved-crease sys-
tems rely on the assumption that folding and bending are
the only deformation modes. However, there is evidence
that stretching and shearing of the sheet in-plane, which
are higher energy deformation states, also play an impor-
tant role in the behavior of curved-crease structures [22].
Thus, methods that can fold curved-crease origami and
model the mechanics of origami after folding should also
capture the non-negligible in-plane behaviors.

Finite elements have been used to model curved-crease
origami starting from flat or pre-folded sheets [9, 15, 23].
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Figure 1: The top row shows four photographs of paper, curved-crease origami constructed using a laser cutter and hand folding with the
corresponding bar and hinge representations on the bottom row including (a) a sine wave tessellation, (b) a square with two parabolic curves,
(c) a canopy made from parabolic curves, and (d) an annulus creased about mid-radius. These models are available in the supplementary
code.

These models allow for simulation of in-plane deformations
and allow for a wider range of boundary conditions. How-
ever, finite elements can be cumbersome, with no guaran-
tee that the formulations will be accurate, quick to im-
plement, or that the model will converge, especially for
systems with large curvatures or many folds.

In an effort to bridge the gap between limited theoret-
ical methods and cumbersome finite element models, we
offer a method for modeling curved-crease origami deploy-
ables that can capture the structural properties of a variety
of curved-creased sheets with relative ease and accuracy.
We improve an existing method for capturing the mechan-
ics of straight-crease origami, called the bar and hinge
model [24–27]. We extend the capabilities of the model
to describe the folding and post-folding structural behav-
ior of curved-crease origami structures. We find that the
model is applicable to curved-crease systems of arbitrary
crease number and complexity for various sheet dimen-
sions, elastic material properties, and structural boundary
conditions. With this reformulation of the bar and hinge
model, we can capture the folding, stiffness, elastic defor-
mations, and nonlinear behavior of curved-crease origami
systems.

This paper is organized as follows. In Section 2, we give
background information on the bar and hinge method for
modeling origami. In Section 3, we derive stiffness expres-
sions from the material properties of the sheet and the ge-
ometry of the mesh for three main deformation modes: in-
plane action, bending, and folding. In Section 4, we verify
and explore these stiffness expressions using four methods:
theoretical structural mechanics, differential geometry the-
ory, experimental laser scanning, and folded shape simu-
lations. Finally, in Section 5, we explore the anisotropy
of two curved-crease origami structures using the bar and
hinge method with commentary on the strengths and lim-
itations of the model.

2. Bar and hinge modeling of origami-inspired struc-
tures

The bar and hinge model is a simplified structural
mechanics-based analytical method that captures the de-
formations and internal forces of thin sheets folded about
straight creases [24–27]. Bar and hinge models can capture
the behavior of origami structures during folding as well
as during loading after folding, a task that kinematic anal-
ysis cannot achieve. Relative to other mechanics models,
such as finite elements, the bar and hinge method runs
analyses quickly and is simple to implement with read-
ily available parameters including a flat fold pattern, ma-
terial properties, and prescribed fold angles. The ease
and simplicity of bar and hinge models allow engineers
to quickly understand and evaluate the structural prop-
erties of origami. The rapid analysis is especially useful
when exploring proof-of-concept systems, running para-
metric studies, or performing optimization studies. State-
of-the-art computer programs, such as MERLIN [26] have
been made available to the community, and are able to
capture geometric and material non-linearity, essential to
understanding the behavior of origami structures.

However, current bar and hinge models are designed for
straight-crease or polyhedral origami systems. Addition-
ally, these programs usually employ arbitrary stiffness val-
ues for elements when defining the properties of the sheet.
Despite these limitations, there is potential for adapting
and enhancing bar and hinge models to approximately cap-
ture the behavior of curved-crease origami.

The simplest bar and hinge model uses three types of
elements that capture the structural properties of the sys-
tem. Figures 2(a-e) show how a sheet with a curved crease
would be decomposed into these elements. The first ele-
ment is a three-dimensional truss bar which only carries
loads along its axis. These bars are connected at nodes
which allow rotation, but not translation between the bars.
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When combined, the bars represent the in-plane stiffness of
a thin sheet. The second element is a bending hinge, anal-
ogous to a spring coiled around a bar. This element serves
the model by simulating the sheet bending stiffness. The
third element is a folding hinge. Similar to the bending
hinge, the folding hinge simulates the rotational stiffness
of the material at the crease.

The bar and hinge method works by calculating the
total stiffness of the system using contributions from each
element. The stiffness can be used to solve the equilibrium
equation giving the forces and displacements of the system
in response to arbitrary boundary conditions. The total
strain energy in the system shows the relevant parameters
of the analysis. That is,

Utotal =
1

2

∑
i

kisδ
2
i︸ ︷︷ ︸

bar energy

+
1

2

∑
j

kjbθ
2
j︸ ︷︷ ︸

bending energy

+
1

2

∑
p

kpf (φp − φpR)2︸ ︷︷ ︸
folding energy

.

(1)
Here, kis is the stiffness of the ith truss bar, and δi is the
corresponding extension of the bar (see Figure 2(f)). The
bending stiffness of the jth hinge is kjb , and θj is the rota-
tion from the flat state (see Figure 2(g)). Finally, kpf is the

stiffness of the pth folding hinge, φp is the dihedral angle
of the folding hinge, and φpR is the prescribed rest angle of
the crease (see Figure 2(h)). These values are either pre-
scribed (for example, rest angles and stiffness coefficients)
or calculated by converging to an equilibrium state (for
example, bar extensions and hinge rotations).

By approximating curved creases with piece-wise lin-
ear bars, we can modify existing bar and hinge models
for curved-crease origami. Additionally, we can relate the
stiffness values of each element to the material properties
and the geometry of the mesh such that the strain energy
can be calculated based on the parameters explicitly de-
fined by the designer.

3. Deriving element stiffness

In order to formulate the bar and hinge method for
curved-crease origami without the use of arbitrary stiffness
values, the stiffness of each of the three elements (in-plane
bars, bending hinges, and fold hinges) should be calibrated
to the mesh geometry and material properties of the sheet.
In this section, we derive stiffness expressions for these ele-
ments starting from structural mechanics. We consider the
three main deformation modes corresponding to the three
model elements separately and verify the entire model in
Section 4.

3.1. In-plane bar stiffness

The bars used in the bar and hinge model capture de-
formations in the plane of the sheet. For curved-crease
origami, the main deformation modes include tension in
the sheet and shearing transverse to the length of the
crease. Both of these deformations should be captured by

the model such that the global deformation of the curved-
crease system can be approximated (for instance, due to
an applied load after folding). The material properties of
the sheet, the dimensions, and the discretization of the
mesh are considered in deriving the stiffness of the bars.

The stiffness of each bar is described by

ks =
EAeff

L
, (2)

where E is the elastic modulus, Aeff is the effective cross-
sectional area of the bar, and L is the length of the bar.
The effective cross-sectional area of the bar must repre-
sent the cross-sectional area of the sheet in proportion to
the geometry dimensions and the discretization. In order
to determine an appropriate expression for Aeff , we cali-
brate the deflection of the bar and hinge model of a small
section of the sheet to the deflection of a similar plane
stress model of the same sheet for both shear and tension
(see Figures 3(a-c)). Our goal is to set the bar and hinge
deflection, ∆BH , equal to the theoretical deflection value,
∆Th (that is, the deflection ratio, ∆BH/∆Th = 1).

Consider a triangular panel extracted from a sheet un-
der uniform traction, F , as shown in Figure 3(d). In this
case, the cross-sectional area of the bar orthogonal to the
traction (that is, the cross-sectional area of the top bar)
must capture the cross-sectional area of the entire trian-
gular panel. We can calculate an effective bar width by
dividing the area of the triangle, AT , by the length of the
bar. Multiplying this value by the sheet thickness gives a
lumped cross-sectional area of the sheet into the bar. The
stiffness of such a bar is defined as,

ks =
EAT t

L2
. (3)

We quantify how the mesh is discretized using an as-
pect ratio, α = H/W , where the panel height, H, is mea-
sured transverse to the crease and the panel width, W , is
measured along the crease. In order to see how the bar
and hinge model deflection changes with aspect ratio, we
set H = 1 [mm] and vary W .

Figure 3(e) shows a comparison between the bar and
hinge deflection with all bars defined by Equation 3 and
the deflection of the plane stress model. For tension, this
stiffness definition matches theory for all aspect ratios.
However, for shear, the bar and hinge model is too flexible,
especially at large aspect ratios.

Noticing that the diagonal bar across the panel cap-
tures the shearing of the panel, we can increase the stiff-
ness of just that element in proportion to the aspect ratio.
Closer examination of Figure 3(e) shows that the shear de-
flection ratio diverges from theory at a quadratic rate for
α ≥ 1. Indeed, a quadratic regression on the data shows
that the deflection ratio varies with the aspect ratio as
a function of the form ∆BH/∆Th(α) = α2/2 + 5/4 with
R2 = 1.000 for α ∈ [1, 20]. This domain for the aspect
ratio represents a reasonable boundary for discretization
size since α < 1 will give an overly coarse approximation
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Figure 2: The bar and hinge method works by representing (a) a creased, thin sheet using three elements: (b) bars to capture in-plane
stretching and shearing, (c) bending hinges to capture sheet bending, and (d) folding hinges to capture crease folding. (e) The combination
of all three elements simulates the deformed and folded shape of the sheet. Illustrations of element deformations due to a force, F , are shown
for (f) bar extensions, (g) bending hinge rotations, and (h) folding hinge rotations. Inset images in (g) and (h) show a side-view with the
hinge elements pointing out of the page.
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of the curved-crease geometry and α > 20 might not con-
verge to a solution. In fact, we have observed that the
condition number of the model increases at a nonlinear
rate for α > 12, which indicates more difficulty for con-
vergence. As such, to better capture the shear behavior,
we can increase the stiffness of the diagonal bar quadrati-
cally with the aspect ratio to reduce the flexibility in shear.
Subsequently, the stiffness of the bars can be calculated as

ks =


(
α2/2 + 5/4

) EAT t

L2
, Diagonal bars

EAT t

L2
, Non-diagonal bars

. (4)

The deflection results are shown in Figure 3(f) where we
see that the tensile deflection always matches the theory
and the shear deflection is within 1% of theory for α > 1.5.

Another way we could have arrived at this solution was
to assume that the bars had a stiffness defined as

ks =


(
a2α

2 + a1α+ a0
) EAT t

L2
, Diagonal bars

EAT t

L2
, Non-diagonal bars

.

(5)
The coefficients a2, a1, and a0 were then found by minimiz-
ing the deviation of the bar and hinge deflection from the
theoretical deflection. Different values of the coefficients
in the range a2, a1, a0 ∈ [0, 10] were used against various
aspect ratios α ∈ [1, 20]. Using this metric, the optimal
values of the coefficients which minimize the bar and hinge
deflection errors are: a2 = 1/2, a1 = 0, and a0 = 5/4.
Thus, both the optimization technique and quadratic re-
gression method arrive at the same solution. Note that
this solution applies to α ∈ [1, 20] because this is a rea-
sonable range for the mesh aspect ratio for curved-crease
origami. It is possible to calibrate the shear response for
low aspect ratios (α < 1), but because such a meshing is
too coarse for curved-crease geometries, this task is out of
the scope of this paper.

3.2. Bending hinge stiffness

When folding a flat sheet about a curved crease, sheet
bending is the predominant deformation mode. The stiff-
ness of the continuous sheet must be lumped into discrete
bending hinges. In order to derive an expression for the
bending stiffness, we use both the geometry of the mesh
and the material properties of the sheet. We modify an ele-
gant derivation by Dudte et al. [28] to describe the bending
stiffness.

Consider a flat sheet that has been folded about a
curved crease. If we mesh this sheet with bar and hinge
elements, we can look at one bending hinge at the inter-
face of two panels with areas A1 and A2, respectively (see
Figure 4(a)). The bending hinge has a length L. The
two panels are rotated, relative to each other, by an an-
gle θ. The hinge elements must capture the bending of a
sheet with thickness t and length s. The theoretical sheet

θ

θ

R

s

(b)
s

A
1

A
2

θ

L

t

(a)

Figure 4: The stiffness of one bending hinge connected to two trian-
gular panels is derived by relating the strain energy in the hinge to
that in an equivalent bent sheet of width, L, and length, s. (a) Top
isometric view and (b) side view.

length, s, is calculated later and is related to a represen-
tative bending region. If we assume that the region of the
sheet we have taken from the curved surface is sufficiently
narrow (that is, the mesh is fine), then we can assume
that the sheet section represented by the bending hinge
has constant curvature, κ.

The bending energy in the sheet should then be

Usheet =
1

2

∫ s

0

EIκ2 ds =
1

2
EIκ2s, (6)

where E is the elastic modulus of the sheet and I is the
second moment of area about the hinge calculated as I =
Lt3/12. Thus, the energy in the sheet section is

Usheet =
1

2

[
Et3

12
Lκ2

]
s. (7)

The curvature of the sheet can be described by κ = 1/R.
The length of the sheet is related to the rotation angle
by s = Rθ. Rearranging gives R = s/θ. Substituting
this relationship into the curvature gives κ = θ/s, and the
strain energy in the sheet is

Usheet =
1

2

[
Et3

12

L

s

]
θ2. (8)

We want to constrain the area captured by the hinges such
that the total area of the entire sheet is never exceeded.
This area can be expressed as sL = (A1 + A2)/2. Rear-
ranging gives s = (A1 +A2)/(2L). We can substitute this
expression into the sheet strain energy giving

Usheet =
1

2

[
Et3

6

L2

A1 +A2

]
θ2. (9)

We set the energy in the bent sheet equal to the strain
energy in the bending hinge,

Uhinge =
1

2
kbθ

2, (10)
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to solve for the stiffness coefficient for bending, kb. This
gives a bending stiffness of

kb =
Et3

6

L2

A1 +A2
. (11)

We see that the bending stiffness is effectively the bending
modulus of a sheet from mechanics, Db = Et3/(12[1−ν2]),
with ν = 0, when multiplied by a non-dimensionalized
parameter based on the mesh. As will be shown in Sec-
tions 4.1 and 4.2, this definition provides a converging so-
lution for bending energy in the sheet.

3.3. Folding hinge stiffness

Deriving the rotational stiffness of a crease based on
the system properties is not yet possible. Confounding
parameters such as material properties, material damage
at the crease, folding history, local crease design, and ge-
ometry of the sheet around the crease could all affect the
stiffness. Existing literature on the subject is mostly ex-
perimental [29–33], and does not consider curved creases.
Overall, there is no method to accurately predict the stiff-
ness of a folding hinge directly from the material properties
and mesh geometry.

A previous approach to modeling fold stiffness [25, 29]
reduces the complexity of the crease into one equation.
The model considers the bending modulus of the sheet,
Db, the length of the fold, Lf , and a length scale factor,
L∗. The length scale factor is introduced for parameters
not explicitly included in the stiffness expression. The fold
stiffness is

kf =
Lf

L∗
Db =

Lf

L∗
Et3

12(1− ν2)
=
Lf

L∗
Et3

12
, (12)

where E is the elastic modulus of the sheet, t is the thick-
ness, and ν is the Poisson’s ratio (for consistency with
the bending derivation, we set ν = 0). The proper value
of L∗ for curved creases is problem-specific and can only
be determined numerically by looking at the difference be-
tween the prescribed folding angle and the angle the model
reaches after folding (see Section 4.4). For straight origami
creases, typical values of L∗ are in the range of 25 [mm]
to 100 [mm] [25]. Despite the overall incompleteness of
fold stiffness modeling, we use this approach to define the
stiffness, kf , of the folding hinges.

4. Verifying the element stiffness

To verify the accuracy of the element stiffness expres-
sions, we employ four different methods to compare de-
formed shapes of the bar and hinge model to deformed
shapes of other theoretical and experimental models. The
deformed shape is a result of the element stiffness expres-
sions and acts as a proxy for verifying the stiffness di-
rectly. The methods we conduct include (1) comparing
the deformed shape of a strip of material under four types
of loading to structural mechanics theories, (2) comparing

the deformed shape of an annulus sector folded along its
center to the shape of a cone section, (3) comparing the
deformed shapes of complex curved-crease origami with
multiple creases to point clouds from laser scanned phys-
ical paper models, and (4) exploring the relationship be-
tween fold stiffness, rest angle, and the actual fold angle
simulated by the model. These verifications serve to show
the accuracy of the results as well as the limitations of the
bar and hinge method.

4.1. Thin strips under different load cases

Without considering folds, we can test to see how well
the bending and the in-plane stiffness definitions capture
the deformation of thin, long strips by comparing the strain
energy in the bar and hinge model to structural mechanics
solutions for the same problems. We model an isotropic,
homogeneous strip using the bar and hinge method with
linear-elastic material properties, and with various mesh
sizes. In order to quantify the size of the mesh, we em-
ploy a metric called the aspect ratio, α. Each triangular
panel has an aspect ratio defined as the ratio of the side
length perpendicular to the fold (H) to the side length
roughly parallel to the fold (W ). Because there is no fold
in the strips, the aspect ratio is the ratio of the vertical
side length to the horizontal side length when the strip
is placed such that the long direction lies horizontally see
Figure 5(b)). As such, a larger aspect ratio indicates a
finer mesh discretization. The strip has a length of 10
[mm], a width of 1 [mm] (that is, H = 1 [mm]), and
a thickness of 0.1 [mm]. For clarity, we use familiar SI
units; however, the units are arbitrary when consistent.
The strip is restrained and loaded in four different ways
(see Figures 5(a-d)).

The first loading case represents torsion in the strip.
At one end, the nodes are restrained in the x-, y-, and z-
directions. At the other end of the strip, one node is pulled
up and the other is pulled down by a prescribed displace-
ment of 5×10−4 [mm] (see Figure 5(a)). The second load-
ing case represents tension along the long axis of the strip.
One end of the model is restrained in the x-, y-, and z-
directions and the other end is loaded in tension along the
plane of the sheet, again with a prescribed displacement
of 5×10−4 [mm] (see Figure 5(b)). The third loading case
represents out-of-plane bending of the strip where both
ends are simply supported and the nodes adjacent to the
ends are loaded in the downward direction, similar to a
four point bending test (see Figure 5(c)). The last load-
ing case represents in-plane bending where one end of the
strip is restrained in the x-, y-, and z-directions and the
other end is loaded perpendicular to the long axis of the
strip similar to a cantilevered beam (see Figure 5(d)).

The energy in the bar and hinge model, UBH, is calcu-
lated by summing the strain energy in the bending hinges
and bars after loading. Each of the four loading cases
has a structural mechanics solution for the strain energy
which we calculated based on the geometry and material
properties of the strip. We call this analytically calculated
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Figure 5: To verify the stiffness expressions for the bar and hinge model, a long, thin strip was modeled and loaded in four ways: (a) torsion,
(b) stretching, (c) bending out-of-plane, and (d) bending in-plane (deformations are exaggerated 1,000 times). (e) The strain energy in the
bar and hinge model, UBH, compared to the strain energy based on structural mechanics theory, UTh, with respect to the mesh aspect ratio,
α.

energy the theoretical energy, UTh. We compared the bar
and hinge energy to the theoretical energy for each load-
ing case at different aspect ratios. From Figure 5(e), we
see that in torsion, the bar and hinge model overestimates
the energy (and stiffness) compared to the structural me-
chanics solution. At an aspect ratio of one (α = 1), where
the height of each triangular panel is equal to its width,
the bar and hinge energy achieves its minimum strain en-
ergy solution, which is roughly double that of the theoret-
ical solution. In this minimum torsion case, α = 1 and
the bending hinges align with the 45◦ axis. This hinge
orientation most closely aligns with the deformation from
real torsion and thus gives the closest approximation. For
other aspect ratios, the diagonal bars in the bar and hinge
model do not align with the real torsion deformation, and
high-energy bar straining occurs. For loading cases where
torsion is present, the bar and hinge model will overesti-
mate the stiffness of the structure (see Section 5.2 for an
example).

Because the unit truss model is used to derive the ten-
sile stiffness definition in Section 3.1, we see that the strip
in tension matches the theoretical solution for all aspect
ratios. These results are encouraging for post-fold loading
modeling of the structure because loading deformations
are often dominated by stretching.

For out-of-plane bending, we see that the result de-
pends on the aspect ratio of the bar and hinge model. For
low aspect ratios (that is, coarser meshes), the bending
hinges overestimate the stiffness of the sheet. However,
as the aspect ratio increases, the strain energy approaches
the theoretical solution. Aspect ratios over three (α > 3)
will give out-of-plane bending solutions within 10% of the
theoretical value. Aspect ratios over four (α > 4) will

give solutions within 5%. Because bending deformations
dominate the folding behavior of curved-crease origami,
we expect better overall folding results with a finer mesh
that still has a convergent solution.

Finally, for in-plane bending, we see that the bar and
hinge model overestimates the stiffness of the sheet by a
factor of about three. This is due to the discrepancy be-
tween the theoretical stress distribution across the cross-
section of the sheet and the bar and hinge’s treatment of
stress as concentrated bar forces. The factor of three can
also be back-calculated from the initial bar definitions in
Equations 3-5. This increased stiffness should not affect
the folding of curved-crease models because shear is rarely
present; however, it might become important in post-fold
loading of the structure. For structures where in-plane
bending is dominant, the bar areas can be reduced by
three to get the bar and hinge model to approach the-
ory. However, because in-plane bending is coupled with
stretching, such a reduction will result in underestimating
the stretching stiffness by the same factor of three.

Overall, these strip tests show the benefits and limita-
tions of the bar and hinge model as formulated here. For
folding of the models where low-energy bending deforma-
tions dominate, the model will capture the final shape and
stiffness well. For analyzing the behavior of structures af-
ter folding, some user discretion must be applied to ensure
that the results are accurate. For cases where torsional
deformations of the system are expected, an aspect ratio
of α ≈ 1 should be used and stiffness may still be overes-
timated by a factor of two. For cases with global in-plane
bending deformation, the user could assume that the stiff-
ness will be overestimated by a factor of about three.

When modeling most other curved-crease origami, the
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analyst should choose a moderate aspect ratio. Through
experience with modeling various geometries, the recom-
mended range for the aspect ratio is α ∈ [5, 12]. In this
range, the mesh is fine enough to properly approximate
the curved geometry of the creases and will meet the the-
oretical stiffness for stretching, shearing, and out-of-plane
bending. Additionally, such a range will give solutions
that reliably converge (although the model will converge
for α ≤ 30, depending on the geometry, boundary condi-
tions, loading conditions, and increment size). Although
it is possible to modify the bending stiffness definition in
Section 3.2 to converge to theory for α < 5, such a task
would not benefit analysis of most curved-crease origami
and is beyond the scope of this paper.

Supplementary codes provided along with this publi-
cation include full implementations of the bar and hinge
model for curved-crease origami. A modified version of the
code that simulates only a strip is provided for the tensile
case shown in Figure 5(b).

4.2. Bending a creased annulus sector into a theoretical
cone

A small subset of curved-crease origami structures can
be described as a piece-wise combination of well-defined
geometric surfaces, such as cones, cylinders, and tangent
developable surfaces connected at a single crease [20]. The
non-zero principal curvature, κ2, of these developable sur-
faces can be calculated and included along with the bend-
ing modulus of a sheet, Db = Et3/(12[1 − ν2]), in a the-
oretical strain energy expression, UTh = 1/2

∫
A
Dbκ

2
2 dA.

Using the theoretical strain energy of the surface as a point
of comparison to the bar and hinge model, we can examine
the performance of the model.

A potential candidate for a simple, piece-wise devel-
opable structure is a circular annulus sector folded about
its center (see Figure 6(a)). If the structure is restrained
in a specific way, we can use differential geometry to show
that the deformed midsurface of the folded sheet is a por-
tion of a cone with well-defined, non-zero principle curva-
ture.

Suppose we have a thin, elastic sheet with thickness,
t, and elastic modulus, E, that is cut into the shape of a
circular annulus sector with width in the radial direction,
2w, and a sector angle of ς0 (see Figure 6(a)). We prescribe
a parametric, flat crease, c0(t), into the sheet such that
the crease is always parallel to edges of the sheet that
follow the polar direction. This crease is a circular arc with
radius of curvature, R0, placed evenly between the inner
and outer radial edges of the sheet (that is, the distance
between the crease and the inner and outer radial edges is
w).

The flat crease has curvature, κ0, constant along its
length. After folding to some dihedral angle, φ ∈ (0, π)
[rad], constant along the length of the curve, the deformed
crease, cf (t), remains planar using structural restraints
(in the z-direction), and has a different curvature, κf , and
radius of curvature, Rf = 1/κf (see Figure 6(b)). The

crease lies in one osculating plane (that is, the plane in
which the tangent and normal vectors at all points along
the crease lie). The angle between the surface of the os-
culating plane and the midsurface of the sheet to the left
of the crease is ηL and is related to the dihedral angle by
ηL = (π − φ)/2 (see Figure 6(c)). By definition, the tor-
sion of the deformed, planar crease, τ , is zero everywhere.
Additionally, because the fold angle is constant, the angle
ηL does not change along the length of the crease.

Fuchs and Tabachnikov [34] proved that the curva-
ture of the deformed crease can be calculated with κf =
κ0/ cos ηL = κ0/ sin(φ/2). Then, with added consideration
for curve speed, |c′f (t)|, Lang et al. [35] confirmed that the
angle, γL, between the crease tangent and the generators
of the curved sheet’s midsurface, gL(t), is defined by

cot γL =
η′L/|c′f (t)| − τ
κf sin ηL

=
−φ′/(2|c′f (t)|)− τ

κ0 cot(φ/2)
. (13)

The generators represent rulings on the curved, developable
surfaces and coincide with the direction of zero principle
curvature, κ1 = 0. By definition, the non-zero principle
curvature of the surface is orthogonal to the generators in
the neighborhood of the crease. Additionally, the layout
of the generators (defined by γL) tells us the geometric
properties of the surface.

If we apply all the assumptions and calculations made
for the circular creased annulus sector, Equation 13 re-
duces to cot γL = 0 for φ ∈ (0, π) [rad]. This new equation
has the solution γL = π/2 [rad]. Thus, the generators of
this creased annulus are normal to the crease at all points.
These generators coincide with the direction of curvature,
κf , and meet at one point (the apex), and the folded shape
is identical to a segment of a cone (see Figures 6(b) and
(d)). A similar process can be used to show that the gen-
erator angles to the right of the crease, γR, are also per-
pendicular to the crease. As shown in Figures 6(d-e), the
creased annulus sector coincides with a portion of a cone
with the upper portion and apex reflected about the oscu-
lating plane of the crease. This observations is consistent
with Mitani’s method for planar, curved folding in [14].

The non-zero principal curvature of a right cone is cal-
culated as

κ2(u) =
1

tan(φ/2)u
√

1 + tan2(φ/2)
, (14)

where u is the distance from the apex of the cone extending
down through the center (see Figure 6(e)) [36].

We used the bar and hinge method to model the creased
annulus sector made with different sector angles (see Fig-
ures 6(f)i-iv). The bending and stretching energy of these
models, UBH, is plotted for different aspect ratios and
normalized by the theoretical cone energy, UTh (see Fig-
ure 6(f)). The aspect ratio is defined as the mean as-
pect ratio of all the triangular panels as defined earlier.
For coarser meshes with low aspect ratios, the bar and
hinge model overestimates the energy and stiffness of the
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Figure 6: (a) Illustration of the parameters for a flat, circular annulus sector creased about its mid-radius. (b) Top-view illustration of the
parameters for the same circular annulus sector that has been folded. (c) Illustration of the cross-section at some point, t0, along the length
of the folded curve with additional parameters. (d) The creased annulus sector coincides with portions of a cone. (e) When the upper portion
of the cone is reflected about the osculating plane touching the crease, the conical shape of the origami structure becomes clearer. (f) A
comparison of the bar and hinge strain energy, UBH, with the strain energy of a cone, UTh for (i-iv) four different flat sector angles, ς0.
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sheet. As the mesh size decreases, the energy in the bar
and hinge model approaches the theoretical solution. For
models with an aspect ratio greater than seven (α > 7),
the bar and hinge solution is within 10% of the theoretical
solution. For sufficiently high aspect ratios, we see that the
bar and hinge energy dips below the theoretical solution.
Underestimating the theoretical cone energy is consistent
with finite element solutions of the same problem carried
out in [9]. The energy underestimation indicates that the
bar and hinge model is capable of capturing some of the
end effects (also called the “free edge effect” [21]) where
the unsupported edges of the curved-crease annulus sector
do not achieve the curvatures of a pure cone [37].

This model is also available in the supplementary code.

4.3. Laser scanning verification of complex curved-crease
origami

For certain curved-crease origami patterns, there is no
existing theoretical description of the deformed shape. Kine-
matics and elasticity formulations alone cannot give the
surface shape between two curved creases unless the pat-
tern is highly constrained, for instance, using a tessella-
tion of creases [21]. Additionally, theories of developable
surfaces used to verify the deformed shape of the creased
annulus sector in Section 4.2 become complicated for sur-
faces that are neither conical or cylindrical, called tangent
developable surfaces. Understanding the shape of this gen-
eral tangent developable surface requires parameters such
as generator angles that are not apparent given the flat
fold pattern. A recent method by Badger et al. [37] finds
the natural shape of general developable surfaces using
an energy minimization method. However, this method is
limited to finding the energy minimal case when only one
crease is used on the pattern.

The bar and hinge method implicitly accomplishes en-
ergy minimization; thus, comparison between the previ-
ous methods would be either unrealistic (e.g., requiring, a
priori, assignment of generator angles) or trivial given an
appropriate mesh size. Instead, we verified the deformed
shapes of complex models by comparing them with the
shapes of physical paper models. The process of capturing
and comparing the folded shape of a paper model is shown
in Figure 7(a). Starting from a flat, curved-crease fold pat-
tern, we fabricated the physical model from sturdy, 0.274
[mm] thick, linen paper. All models are about 10 [cm]
by 10 [cm] when flat. We cut the pattern using a laser
cutting machine, and we hand-folded the model such that
the crease material yields and the model holds some natu-
ral rest angle. Using a NextEngine 3D Laser Scanner HD
machine, we captured the deformed shape of the paper
model with an accuracy of 0.127 [mm] (0.005 [in]) and at
a resolution of 10,400 [points/cm2] (67,000 [points/in2]),
which is the highest quality scan available. From the scan,
a set of points with position values in three-dimensional
Cartesian coordinates, called the point cloud, is saved and
used in the comparison. We chose to sample every fifth

point in the point cloud to expedite analysis (the largest
unprocessed point cloud included about 250,000 points).

Simultaneously, we modeled the same system with the
bar and hinge model using the paper’s material properties
and the geometry of the fold pattern. The prescribed fold
angle was estimated from the point cloud, and various L∗

values were tested to find the result giving the lowest mean
error (see Section 4.4). To represent the shape of the sur-
face between the creases in the bar and hinge folded model,
we enrich the mesh by adding points along the length of
each bar. We then chose three points from the point cloud
and three corresponding points from the enriched mesh to
align the two systems (usually, three easily identifiable lo-
cations such as corners or crease ends). After alignment,
for each point in the enriched mesh, we found the clos-
est point in the point cloud and calculated the distance
between them. This distance is the Hausdorff distance of
that point.

We plotted the Hausdorff distances of each point in the
enriched bar and hinge mesh and calculated simple statisti-
cal values (mean distance, standard deviation of distances,
and the median distance). The sine wave tessellation (Fig-
ure 7(b)) has an average Hausdorff distance of less than
2 [mm], and all other example have an average Hausdorff
distance less than 1 [mm]. We see in the far-right images
in Figures 7(b-e) that the deformed shapes of the bar and
hinge models agree with the physical models. The largest
errors, about 8 [mm], occur at edges and are mainly caused
by human errors in choosing the alignment points or are
due to local deformations not captured by the bar and
hinge model. We see from these comparisons that the bar
and hinge model is capable of approximating the deformed
shape of complex folded curved-crease origami structures.

4.4. The effect of rest angle and fold stiffness on the ge-
ometry

As shown in Equation 1, the in-plane, sheet bending,
and the crease folding energy all contribute to the energetic
equilibrium of the structure. The crease folding energy is
a function of the fold stiffness, kf , as well as the differ-
ence between a prescribed rest angle, φR, and the actual
fold angle of the crease, φ. The fold stiffness is inversely
proportional to the length scale parameter, L∗, which is
prescribed in the bar and hinge model. To fold the origami
into a three-dimensional state, we sequentially reduce the
rest angle from φR = 180◦, downward. For curved-crease
origami, any folded state results in elastic bending energy
stored in the sheet. This elastic energy is counteracted by
elastic folding energy in the creases. Thus, in any folded
state, φR 6= φ, the difference between the prescribed and
actual fold angles depends on the prescribed length scale
parameter, L∗, which factors into the fold stiffness. As dis-
cussed in Section 3.3, there is no straightforward method
for determining the value of L∗. Instead, here we explore
how this value affects the overall folded geometry.

In Figure 8, we explore the folded geometry of two
structures: a creased annulus sector and a rectangular
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sheet with two curved folds of different, uniform curva-
ture. Different values of L∗ are used to define the fold
stiffness, and the systems were analyzed by decreasing the
rest angle of the crease. High values of L∗ indicate a flex-
ible fold, while low values indicate a stiffer fold. Previous
research has shown that for origami, L∗ can be assumed
to be in the range of 25 [mm] to 100 [mm], while exper-
imental results on folds have varied from 1 [mm] to 700
[mm] [25].

We first study the behavior of the curved-crease annu-
lus sector which was introduced in Section 4.2. Comparing
Figures 8 (a) and (b), we see that the mesh discretization
does not have a significant influence on achieving the pre-
scribed fold angle. Furthermore, the fold angle, φ, tends
to be close to the rest angle when realistic values of L∗

are used, and when φR > 90◦. As expected, when φR is
reduced further, the rest angle and the actual fold angle
deviate. An exception is the stiffest folds (L∗ = 1) which
essentially restrains the annulus to take the prescribed fold
angle. Lang et al. [35] predicts that as the dihedral angle
approaches zero, the nonzero principal curvature of the
sheet about the crease asymptotically increases towards
infinity. Our results further verify this observation by
showing that all systems have some finite deviation from
φR = 0◦. The study of the curved-crease annulus sector
shows that for simple, single-crease systems, the folded
state is not highly dependent on the choice of L∗, and an
approximate folded state can be achieved by defining the
rest angle, φR. Furthermore, the same folded geometry
(angle φ) can be achieved with different combinations of
L∗ and φR.

The curved-crease origami with two folds of different,
uniform curvature exhibits a more varied response when
L∗ is changed (see Figures 8(d-e)). In addition to the coun-
teraction between crease folding energy and sheet bending
energy, here the incompatibility between the crease cur-
vatures also affects the folded state. The crease with low
curvature (that is, the straighter crease with fold angle φ2)
tends to stay close to the prescribed rest angle regardless
of L∗. On the other hand, the crease with high curva-
ture can only approach the rest angle when the crease is
much stiffer than a realistic origami system (L∗ = 0.01).
In reality, this would correspond to using a mechanical
system to restrain the crease. For realistic values of L∗

(e.g., L∗ = 10), the crease with higher curvature, φ1 de-
viates from the prescribed fold angle which indicates that
there is more counteraction between energies in the sys-
tem. From these case studies, we see that the value for
L∗ can have a more significant influence for more complex
curved-crease origami, and choosing an appropriate value
of L∗ is problem-specific (for example, affected by differ-
ential curvature of folds in the pattern). A user could per-
form similar parametric studies by varying both φR and
L∗ to find the combination that gives a reasonable ap-
proximation of the folded structure. As shown in the next
section, finding a reasonable approximation of the folded
geometry is important before moving on to post-fold load-

ing problems.

5. Modeling the anisotropy of curved-crease struc-
tures

The unique structural properties of curved-crease origami
come from their folded geometry and post-folding behav-
ior. Specifically, folded curved-crease origami will resist
loads and store energy differently depending on the di-
rection of loading. We describe this behavior as global
stiffness anisotropy of the structure, or simply, anisotropy.
With the inclusion of variable parameters such as the fold
angle or post-loading deformed shape, the anisotropy takes
on a new dimension and can be functionally tunable. For
engineering applications, this anisotropy can be used to
create structures which are stiff enough to support loads
in one direction, but can deform and fold in a prescribed
fashion when loaded in other directions. Curved-crease
geometries can also reduce anisotropy in structures like
corrugations by varying the direction of the creases [10].

The bar and hinge model seems to be well-suited for
exploring this anisotropy because it can simulate differ-
ent boundary conditions and load cases, it converges reli-
ably, and can provide relatively accurate results when con-
sidering global structural behavior. Moreover, the model
is numerically efficient which allows for parametric stud-
ies on the anisotropy and future optimization of these
unique behaviors. The bar and hinge formulation pre-
sented in Section 3 limits the number of user-specified pa-
rameters (for example, L∗) which makes the system behav-
ior directly dependent on geometric and material proper-
ties which greatly simplifies a user’s role in an optimization
process. Furthermore, Figure 8 suggests that linear vari-
ations in L∗ result in smooth variations in the structural
response. We also expect that other linear variations in
geometry and materials would result in smooth behavior
variations, allowing for convex functions in different para-
metric optimizations. In this section, we use the bar and
hinge model to study the anisotropy of two curved-crease
origami structures after folding and use these studies to
evaluate the capabilities and limitations of the method.

5.1. Multi-directional stiffness of a cantilevered creased an-
nulus sector

The creased annulus sector described in Section 4.2
has interesting anisotropy despite being made with only
a single crease. We looked at the stiffness of this geometry
when it is folded to different fold angles, restrained at one
end, and loaded at the other end (see Figure 9(a)).

The tip of the structure is loaded in different direc-
tions denoted by the spherical coordinate system with ϕ
as the polar angle (that is, the angle to the z-axis) and ϑ
as the azimuthal angle (that is, the angle to the x-axis). A
small displacement analysis is performed. After loading,
the resultant forces acting on the structure, F , is calcu-
lated in the same direction as the applied displacement,
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∆, and these two quantities are used to calculate the stiff-
ness, K = F/∆. Figures 8(b-e) show the results of this
analysis for four folded states of the creased annulus sector,
represented by the fold angle, φ ∈ {180◦, 150◦, 120◦, 90◦}.

We see that in all folded states, the stiffest loading di-
rections are in the plane of the creases where ϕ = 90◦.
When the sheet is flat (φ = 180◦), there is high stiff-
ness for any in-plane loading (that is, the x-y plane where
ϕ = 90◦). As the structure starts to fold out-of-plane, it
also gains stiffness in other azimuthal (ϕ) directions. Two
distinct points with high stiffness emerge at ϑ ≈ 80◦ and
260◦ when ϕ = 90◦. These points correspond to directions
of loading that are nearly parallel to the crease at the tip
(that is, the y-axis as shown in Figure 9(a)). These direc-
tions and regions change slightly as the system is folded.
The regions with higher non-orthogonal and out-of-plane
stiffness increase in domain size with more folding (that is,
the eccentricity of the ellipses of high stiffness lowers and
becomes more circular with increased folding).

This model is also available in the supplementary code.

5.2. Large deformation response of a cantilevered, creased
annulus sector

We continue the analysis above by loading the creased
annulus sector in the upward direction and exploring the
large deformation response. Figure 10(a) shows the de-
formed shapes of a physical model of the creased annulus
sector made from paper. From these pictures, we see that
the global deformation includes torsional bending of the
thin sheet. In Section 4.1, we found that the proposed
formulation for the model overestimates torsional stiffness
in thin strips of material. This overestimation varied with
the mesh size, and a minimal error occurred when the as-
pect ratio of the panels is one.

For a structure such as this creased annulus sector,
the effects of stretching, shearing, bending, and torsion all
play a part in this large, upward deformation. Assigning a
mesh with an aspect ratio of one will give poor results in
bending and shearing (that is, will overestimate the stiff-
ness), but an aspect ratio of eight will give poor results
in torsion. We first explored the deformed shape of these
two mesh discretizations by subjecting the creased annu-
lus sector to a displacement-controlled simulation. Fig-
ure 10(b) shows that the coarser mesh (α = 1) can capture
more twisting about the fold than the finer mesh (α = 8)
shown in Figure 10(c). Furthermore, Figure 10(d) shows
that the finer mesh (α = 8) has a significantly stiffer load-
deformation response. Moreover, the coarse mesh (α = 1)
gives the lowest stiffness and force response. From our
preliminary analysis with this model, the lowest stiffness
solution would also be the most accurate when compared
to the real-world behavior. Figures 10(e) and (f) show the
strain energy of different elements for the coarse (α = 1)
and fine (α = 8) meshes, respectively. Both cases have a
high proportion of bar stretching energy which is expected
for this type of non-conforming vertical displacement. The
coarser mesh has a substantially lower total energy, and

both the sheet bending and crease folding contribute to
the total system energy. These element deformations are
essential for capturing the global torsion of the structure.
The finer mesh has about the same magnitude of crease
folding energy; however, it overestimates the bending and
stretching energy in global torsion.

For problems with large twisting, the bar and hinge
model can give a reasonable approximation of the true de-
formed shape. However, the forces and stiffness in the
load-deformation response will likely be overestimated. A
user of this model who is analyzing a structure and load
case with high torsion should consider using different as-
pect ratios to identify which case gives the lowest forces
and energy. This case will likely have a low aspect ratio
and would provide the approximation closest to reality.

5.3. Anisotropy of a pinched fan

One curved-crease origami structure with novel poten-
tial for engineering use is a folded fan made with pleated
creases that is pinched after folding (see Figures 11(a-d)).
This model has a low rotational stiffness about the pinched
point and large stiffness in the direction of the creases.
Such a system could be used to create rotational hinges
with variable and programmable stiffness with potential
applications in robotics, architecture, and beyond.

Here, we quantify the difference between rotational and
axial stiffness for this structure by performing a deformation-
controlled analysis using the bar and hinge model. The ax-
ial stiffness, Ka, is computed from a point load applied into
the middle crease line, Pa, while the rotational stiffness,
Kr, is obtained from a point load, Pr, that is orthogonal to
the same crease. The fan is supported through its center
in the x- and z- directions with an additional y-restraint
at the lowest node on the support line (see Figure 11(a)).
The analysis was performed over two separate regimes.
The first regime involved folding the flat pattern into the
three-dimensional fan shape with fold angles of 90◦. The
next regime involved pinching the folded fan in the center
to create the rotating hinge. During the pinching process,
we encountered a case where sequential folds in the pattern
buckle together similar to other origami pleats in the lit-
erature [38]. Each of the analysis regimes was divided into
100 displacement increments, and the axial and rotational
stiffness were calculated at each increment (Figure 11(e)).

For all increments, the axial stiffness is greater than
the rotational stiffness. Figure 11(f) shows the ratio of the
rotational stiffness to the axial stiffness. As the model is
pinched, this ratio decreases indicating a larger difference
between the rotational and axial stiffness. At the final
increment, the rotational stiffness is about 0.2% that of the
axial stiffness which indicates the formation of a rotational
hinge in the structure. If the pinching on the structure is
released, then system will recover to a state with higher
rotational stiffness. This type of stiffness anisotropy in
curved-crease origami could be exploited for creating joints
and structures with tunable characteristics.
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6. Concluding remarks

In this paper, we have introduced a bar and hinge
method for simulating the structural behavior of curved-
crease origami during and after folding. This method is
rapid and can model a variety of curved-crease origami
structures with different boundary conditions. There are
three element types, in-plane bars, bending hinges, and
folding hinges, which together can capture the global de-
formation of the structure. We derived the stiffness values
of each element based on the system geometry, the mesh
discretization, and material properties.

The stiffness expressions were verified and explored us-
ing different theoretical and empirical models of simple
and complex curved-crease origami structures. The first
verification method compared the deformation response
of long strips of material modeled using the bar and hinge
method to theoretical solutions from structural mechanics.
The stiffness expressions were also verified using differen-
tial geometry solutions and by comparing the deformed
shape of paper models to bar and hinge models through
laser scanning. The influence of choosing a rest angle and
a fold stiffness were also explored in relation to the final
folded shape.

The method can be used to explore the complex, post-
fold stiffness anisotropy of various curved-crease origami
structures. We first showed a cantilevered creased annulus
sector that has regions of high stiffness which correspond
to loading parallel to the fold lines. The out-of-plane stiff-
ness of this structure increases as it becomes more folded.
When the cantilevered annulus sector is loaded upward,
it experiences a complex, torsional deformation. We also
explored a curved-creased fan for its stiffness parallel and
perpendicular to the fold lines. This structure shows a
tunable anisotropy where a rotational hinge can be tuned
and created by pinching the center of the fan.

Our exploration of this new formulation of the bar
and hinge model shows that it is well suited for captur-
ing the folding sequence of curved-crease origami. Because
the folding primarily engages sheet bending, the deformed
shape and stiffness can be captured well with moderately
fine mesh discretization sizes (α ∈ [5, 12]). Stretching and
shearing stiffness is captured well by the model; however,
the stiffness of in-plane bending is overestimated by a fac-
tor of three, regardless of the mesh. This stiffness overes-
timation can be reduced by cutting the bar stiffness by a
third – though, a three-fold reduction in stretching stiffness
would also occur. The bar and hinge model can approxi-
mate global torsional deformations, but typically overesti-
mates stiffness for this behavior. Coarser meshes tend to
perform better when high levels of torsion occur. These
preliminary studies show how curved-crease origami struc-
tures can be used to create novel mechanical behaviors
such as anisotropic stiffness and tunable stiffness proper-
ties.

Example code is provided as supplementary material
with various examples of curved-crease origami folding and

post-fold loading simulations. We hope that this code
and the bar and hinge model in general will help expedite
research on the engineering applications of curved-crease
origami by providing a fast and reasonably accurate sim-
ulation tool for the folding and post-folding structural be-
havior.

Acknowledgments

The authors are grateful for the financial support pro-
vided by the Office of Naval Research (Grant No. N00014-
18-1-2015). The first author is also thankful for support
from the National Science Foundation Graduate Research
Fellowship Program (Grant No. DGE 1256260).

References

[1] E. T. Filipov, T. Tachi, G. H. Paulino, Origami tubes as-
sembled into stiff, yet reconfigurable structures and metama-
terials, Proceedings of the National Academy of Sciences of
the United States of America 112 (40) (2015) 12321–12326.
doi:10.1073/pnas.1509465112.

[2] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umem-
oto, T. Ito, M. Sasaki, Self-deployable origami stent grafts as a
biomedical application of Ni-rich TiNi shape memory alloy foil,
Materials Science and Engineering: A 419 (1) (2006) 131–137.
doi:10.1016/j.msea.2005.12.016.

[3] G. V. Rodrigues, L. M. Fonseca, M. A. Savi, A. Paiva, Non-
linear dynamics of an adaptive origami-stent system, Inter-
national Journal of Mechanical Sciences 133 (2017) 303–318.
doi:10.1016/j.ijmecsci.2017.08.050.

[4] K. Miura, Method of packaging and deployment of large mem-
branes in space, Tech. Rep. 618, The Institute of Space and
Astronautical Science (1985).

[5] R. Tang, H. Huang, H. Tu, H. Liang, M. Liang, Z. Song,
Y. Xu, H. Jiang, H. Yu, Origami-enabled deformable silicon
solar cells, Applied Physics Letters 104 (8) (2014) 083501.
doi:10.1063/1.4866145.

[6] S. Guest, S. Pellegrino, Analytical models for bistable cylindri-
cal shells, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 462 (2067) (2006) 839–854.
doi:10.1098/rspa.2005.1598.

[7] L. Giomi, L. Mahadevan, Multi-stability of free spontaneously
curved anisotropic strips, Proceedings: Mathematical, Physical
and Engineering Sciences 468 (2138) (2012) 511–530.

[8] N. P. Bende, A. A. Evans, S. Innes-Gold, L. A. Marin,
I. Cohen, R. C. Hayward, C. D. Santangelo, Geometri-
cally controlled snapping transitions in shells with curved
creases, Proceedings of the National Academy of Sciences of
the United States of America 112 (36) (2015) 11175–11180.
doi:10.1073/pnas.1509228112.

[9] S. R. Woodruff, E. T. Filipov, Structural analysis of curved
folded deployables, in: Earth and Space 2018, ASCE, Cleveland,
OH, 2018, pp. 793–803. doi:10.1061/9780784481899.075.

[10] S. R. Woodruff, E. T. Filipov, Curved creases redistribute global
bending stiffness in corrugations: theory and experimentation,
Meccanica. (Accepted). (2020).

[11] T. Tachi, G. Epps, Designing one-DOF mechanisms for archi-
tecture by rationalizing curved folding, 2011.
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