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Abstract Corrugations offer a convenient way to make thin,
lightweight sheets into stiff structures. However, traditional,
v-shaped corrugations made from straight creases result in
highly anisotropic stiffness which leads to undesirable flexi-
bility in some directions of loading. In this paper, we explore
the bending stiffness of curved-crease corrugations with a
planar midsurface – developable corrugations made by fold-
ing thin sheets about curves and without linerboard covers
on the top or bottom. The curved-crease corrugations break
symmetry in the pattern and can redistribute stiffness to re-
sist bending deformations in multiple directions. To study
these systems, we formulate a framework for predicting the
bending stiffness of any planar-midsurface corrugation from
its multiple geometric features at different scales. We use
the framework to create two predictive methods that provide
valuable insight to the global stiffness of corrugations with-
out a detailed analysis. Results from these methods match
well with experimental, three-point bending tests of five cor-
rugation geometries made from polyester film.We found that
corrugations with elliptical or parabolic curved-creases that
intersect with one edge of the pattern are best at redistribut-
ing stiffness in multiple directions. While a straight-crease
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pattern has a stiffness of about 4 [N/mm] in one direction
and about 0 [N/mm] in the other, a parabolic crease pattern
has a stiffness of about 2.5 [N/mm] in both directions. These
curved-crease corrugations can enable the self-assembly and
fabrication of practical, stiff structures from simple, devel-
opable sheets.

Keywords corrugations · curved-crease origami ·
lightweight structures · developable folding · multi-
directional stiffness

1 Introduction

Corrugations are an essential geometric feature in a wide
range of load-resisting applications. By deforming a flexible,
thin sheet into a pattern of ridges and grooves using wrinkles
or creases, the structure gains significant resistance to bend-
ing. Using the same amount of material as a plate, a simple
corrugation can see an increase in stiffness of about three
orders of magnitude [12]. Applications span many fields in-
cluding: (1) civil engineering where corrugated roofs and
floor slabs limit the dead weight of the structure while main-
taining strength, stability, and serviceability, (2) packaging
engineering with corrugated cardboard, (3) aerospace en-
gineering where corrugated sandwich panels are used for
lightweight wings, (4) mechanical engineering with exam-
ples like corrugated hoses and gaskets, and (5) ship decks
designed by naval architects [3].

Corrugations are an example of lightweight, and there-
fore, efficient structures, but they are not without limitations.
In their simplest form, corrugated structures are made by
folding a flat, developable sheet along straight creases, which
results in highly anisotropic bending stiffness behavior. Fig-
ure 1a shows an example of such a traditional, v-shaped cor-
rugationmade with straight creases. This geometry can resist
bending about one direction (Figure 1b), but collapses when
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loaded about another direction (Figure 1c). Prior research has
addressed this limitation of corrugated structures in a number
of ways. For instance, a traditional means of resisting com-
pliant unfolding in roof structures is by supporting the edges
with beams and columns at each valley crease [15]. Other
means of restricting unfolding involve embedding a corru-
gation into a material matrix, like steel into concrete [8] or
copper in tin [2]. Similarly, corrugations can be restrained
using partial embedding on one side, similar to composite,
concrete-metal decking [11].

Arguably, the most popular method to overcome the
anisotropy and to improve the corrugation bending behav-
ior is to sandwich it and connect it with two linerboards (for
instance, corrugated cardboard [32] or sandwich corruga-
tions [26]). Others have seen functionality in the stiffness
anisotropy of corrugations and used them to design mor-
phing structures [23][24][27]. Origami principles have also
inspired new corrugation designs with tunable stiffness char-
acteristics. Another benefit of origami is rapid fabrication
from flat sheets through self-assembly [13]. Furthermore,
origami tube [7] and arch [9] systems have been shown to
increase stiffness while reducing global anisotropy.

The above solutions to stiffness anisotropy are limited,
however.Additional supports complicate the design andmight
be unavailable for certain applications. Composite-embedded
structures add additional weight to the corrugation that may
be disadvantageous to a design. Sandwich corrugations com-
plicate the design and manufacturing of the structure with
additional adhesion between layers. Many straight-crease
origami designs require locking mechanisms or complex,
non-developable manufacturing. Although some origami-
inspired corrugationsmay exhibit improved global “isotropy”
(for example, miura-ori or egg box patterns), this improved
isotropy comes at a great loss of global stiffness. For exam-
ple, the strong direction of a traditional, v-shaped corrugation
made with straight creases is over seventy-five times stiffer
than the Miura-ori pattern [12]. It would be ideal if we could
construct corrugations with stiffness isotropy, that are made
from a simple, flat, developable sheet, and do not require
added support or adhesion.

In this work, we introduce an origami-inspired, curved-
crease corrugation that achieves this unique stiffnesss isotropy.
The system is made from a thin, developable sheet, but in-
stead of straight creases, curves are used to fold parabolic
or elliptical corrugations into three-dimensional shapes that
have a planar midsurface. Figure 1d shows an example of
these curved-crease corrugations made from paper. This
structure is stiff enough to resist significant loads in both
directions (Figure 1e-f).

Curved creases have been used in origami for art [4]
as well as in engineering contexts. These geometries have
been studied mathematically, relating the crease geometry
to the geometry of the folded sheet [5][14][18]. Additional

research has explored the folded geometries in terms of sheet
deformations using elastica equations [20], finite element
analysis [29][30], and energy minimization [1].

Early work on the structural properties of curved-crease
corrugations explored their performance under impact [10].
Other research has suggested that curved-crease corruga-
tions possess non-structural advantages such as improved
performance for gas or fluid transport [16][17]. Existing re-
search has not identified the unique stiffness isotropy possi-
ble with curved-crease sheets. Additionally, there is currently
no framework or method to predict or estimate the bending
stiffness of such corrugations.

In this paper, we present a theoretical framework and ex-
perimental data to show the unique bending stiffness proper-
ties of curved-crease corrugations. The format of the article is
as follows. In Section 2, we describe a framework for qualita-
tively connecting geometric characteristics of a corrugation
to its bending stiffness about any direction in the xy-plane. In
Section 3, we present the geometries of five origami corruga-
tion patterns used in subsequent analyses and experiments.
In Section 4, we use two methods to quantitatively predict
the bending stiffness of the folded, three-dimensional corru-
gation geometries estimated using a bar and hinge analyti-
cal simulation. In Section 5, we present three-point bending
tests of physical corrugations made from polyester film and
compare the results to the predictions made in Section 4.
Conclusions and discussion of future work are presented in
Section 6.

2 Stiffness contributions at multiple scales

When considering a corrugated system for structural func-
tion, we often want the system to support external loads
while minimizing the overall displacement. Consider a thin,
isotropic, homogeneous rectangular plate lying in the xy-
plane with applied loads that cause a small deflection, w, in
the z-direction and internal bending moments per unit width,
Mx , My , and Mxy . The moment-curvature relationships for
this plate are

Mx = D
(
∂2w

∂x2 + ν
∂2w

∂y2

)
; (1)

My = D
(
∂2w

∂y2 + ν
∂2w

∂x2

)
; (2)

Mxy = −D(1 − ν)
∂2w

∂x∂y
, (3)

where D = Eh3/[12(1 − ν2)], E is the elastic modulus of
the plate material, h is the thickness of the plate, and ν is the
Poisson’s ratio [28]. If we assume, for simplicity, that ν = 0
and that a line load is applied that causes bending about the y-
direction (without loss of generality), the moment-curvature
relationships reduce to that of a beamwith a bendingmoment
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Fig. 1 Not all corrugated systems are the same. (a) A v-shaped, straight-crease corrugation (b) can support 200 [g] in bending about the y-direction,
but (c) collapses when carrying 10 [g] in bending about the x-direction. (d) A parabolic, curved-crease corrugation supports 200 [g] in bending
about both the (e) y-direction and (f) the x-direction.

about the y-direction, M , that varies along its length in the
x-direction, but is constant across its width, b. That is,

M = EI
d2w

dx2 , (4)

where I = bh3/12 is the second moment of area about the y-
direction. Through double integration over the length of the
plate and application of boundary conditions, the deflection
can be calculated from Equation 4.

When corrugations are folded into geometries with a
flat midsurface and applied loads are unidirectional, the cor-
rugation’s deflection should behave similarly to that of a
plate. If we keep the boundary and loading conditions the
same between different corrugation geometries and maintain
the same homogeneous material properties of the sheet, the
second moment of area should be the only structural prop-
erty that changes with the corrugation geometry. Given the
complex geometry of a folded corrugation, the exact second
moment of area will be heterogeneous and will depend on
the location in the corrugation’s xy-plane. Through careful
consideration of the corrugation’s folded geometry, we can
simplify the second moment of area into one averaged value,
and subsequently, simplify the deflection analysis.

In this section, we examine planar-midsurface corruga-
tion systems created by folding about arbitrarily oriented
creases and identify how variations in the geometry affect
the bending stiffness of the structure. We organize the ob-
servations as a framework that considers the geometry at
multiple scales, including the basic sheet section, unit cross-
section, a single crease, and the entire corrugated system
(Figure 2a). The qualitative geometric framework is then
used to formulate two methods for predicting the averaged

second moment of area value, and thus, the stiffness of an
arbitrary curved-crease geometry.

2.1 Sheet section

If we break down the geometric characteristics of a creased
corrugation, the smallest relevant property is the stiffness of
the sheet section spanning between creases (Figure 2a(i)).
Bending the sheet section over its length, s, can first be
characterized by its second moment of area

Isheet =
ωt3

12(1 − ν2)
, (5)

where ω is the width of sheet under consideration (into the
page), t is the thickness of the sheet, and ν is Poisson’s ratio of
the material. Here, we assume that the width of the sheet, ω,
is much greater than s, which makes the bidirectional Pois-
son’s effect important for considering sheet bending. This
second moment of area for the sheet is a function of thick-
ness cubed. Considering that the sheet thickness is small,
this relation shows that bending between creases is overly
flexible, and thereby unwanted in the overall corrugation.
Another important geometric quality of the section stiffness
is the spacing between creases, s. Similar to the importance
of length to a beam in bending, the crease spacing affects the
ability of the sheet to resist local bending. A larger crease
spacing will give a longer, unsupported span that will bend
more easily than a smaller crease spacing.



4 Steven R. Woodruff, Evgueni T. Filipov

k
f 
 = ∞ k

f 
 > 0 k

f  
= 0s

1
s

2

d
1

ϕ
a

d
2

ϕ
a

ϕ
b ϕ

b

t

s

(i) Sheet section

(a) System scale categories 
(iv) Corrugation system(iii) Single crease

(ii) Unit cross-section

(c) Crease depth (e) Fold stiffness(d) Crease support(b) Sheet section 

      stiffness

x

y

z

y

z

ϕ/2

1/κ

a

a’
b’b

c c’

Fig. 2 (a) The stiffness of a corrugation depends on its geometric properties at multiple scales combined into the full system. (b) Sheet section
stiffness for bending about its original plane (a-a’) is the most local property giving stiffness to a system. (c) Crease depth adds bending stiffness
about directions in the xy-plane by distributing material away from the neutral axes (b-b’ and c-c’). (d) The supports at the edges of a unit
cross-section affect the stiffness as well as the crease’s ability to resist flattening and large deformations. (e) Similarly, fold stiffness gives the unit
cross-section stiffness to resist flattening and determines whether the sheet or the crease will deform more.

2.2 Unit cross-section

The next scale we consider is the unit cross-section defined at
each point along the length of the crease (see Figure 2a(ii)).
Here, we consider bending to occur orthogonal to the cross-
section (about b-b′ and c-c′ in Figure 2c); therefore, the
folded unit cross-section redistributes material away from
the neutral axis. The unit cross-section has two important
qualities that contribute to how it redistributes material, and
thereby, how much it increases the global bending stiffness
of the corrugation. The first quality is the depth of the unit
cross-section and the second is how well it maintains its
folded shape.

The depth of the unit cross-section is the distance be-
tween the top crease and the lower creases. The bending
stiffness of a cross-section – in this case, about the cross-
section’s centroid in an xy-direction – increases as material
is moved away from the neutral axis. The deeper the cross-
section, the greater its secondmoment of area and the greater
its bending stiffness will be. The second moment of area of
half of the unit cross-section (one rectangular sheet) is

Irect =
st
12

(
s2 cos2 φ

2
+ t2 sin2 φ

2

)
, (6)

where φ is the fold angle (see Figure 2a(ii)). If additional
sheets are to be taken into account, a new neutral axis can be
computed, and the total second moment of area can be found
using the parallel axis theorem.

Because s >> t, the bending stiffness of the unit cross-
section is mostly dependent on two important parameters, s
and φ. Increasing s will increase the depth of the unit and
result in a larger bending stiffness (Figure 2c). Additionally,
themore a unit cross-section is folded (φ→ 0), the greater its
depth (within the domain 0 < φ ≤ π [rad]). However, from
a practical perspective, it is not useful to have overly folded
creases because the surface area covered by the corrugation
would go to zero. In a general sense, the unit cross-section
bending stiffness is going to be much greater than the sec-
tion bending stiffness because the way in which the sheet is
loaded. For bending about the unit cross-section, the upper
portions of the corrugation will carry compression while the
lower portions will carry tension, or vice versa. In this sce-
nario, bending of the actual sheet is avoided and the structure
is much stiffer.

It is important for a unit cross-section to maintain its
folded shape during loading, because if it flattens, its depth
will be reduced, and the overall stiffness of the corrugation
will decrease. The boundary conditions surrounding the unit
cross section, the local crease stiffness, and the sheet section
stiffness will all affect the ability of the system to maintain
its shape. The boundary conditions or supports surrounding
the unit-cross-section are dependent on the adjacent creases
in the corrugation and will likely fall between a case with
two fully pinned ends and a case with a pin and a roller sup-
port (Figure 2d). In curved-crease corrugations, the different
geometry of separate creases will lead to stiffer boundary
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conditions for each individual crease. Next, a high crease
stiffness, k f , will also maintain the folded shape better, re-
gardless of the boundary conditions. Creases in corrugations
often have lower stiffness than the base sheet because of
intentional damage during the fabrication (for instance, per-
foration). In some cases however, plastic deformation and
strain hardening of the creased material can lead to a stiffer
crease than the base material. Finally, the sheet section bend-
ing behavior as discussed in Section 2.1 will also have an
effect in the unfolding of the corrugation during loading (see
cases with high fold stiffness in Figure 2e) [19].

2.3 Single crease

The next geometric scale we consider is the single crease
shown in Figure 2a(iii). The single crease connects two con-
tinuous sheets together, and forms a full, three-dimensional,
beam-like structure. The first geometric quality to consider
for a single crease is the unsupported length or distance that
it spans. The longer this distance, the more flexible the full
system would be. Furthermore, we assume that creases will
continuously span through the entire, or at least throughmost
of the corrugation. Although it may be possible to interweave
multiple creases that together form a span, we expect that the
transfer locations that connect creases will result in weak
points susceptible to bending.

The next important geometric characteristic is the di-
rectionality of the crease. Straight creases, such as those in
the Figure 1a will have a high second moment of area in
one direction, but will not be able to provide stiffness in
orthogonal directions. In contrast, a curved crease will re-
orient the unit cross-section over its length, and can thereby
provide additional stiffness to the structure in multiple di-
rections. The curved-crease approach can accomplish this
cross-section reorientation with only one crease and does
not require the introduction of additional creases, or any ex-
ternal stiffeners. Indeed, a straight-crease geometry like a
hornbeam leaf (sometimes modeled as a row of Miura-ori
units [22]) has greater directionality than a traditional, v-
shaped corrugation, but gains flexibility from the additional
creases. Moreover, bending stiffness would still concentrate
around the few directions perpendicular to the crease. Note,
however, that the curved creases also introduce a fundamen-
tal problem to the overall beam-like crease structure because
the system becomes asymmetric. If the crease is loaded in the
center and supported at the ends, then this asymmetrywill re-
sult in combined bending and torsional deformations, which
would make the structure substantially more flexible than
a straight crease design. In the next subsection, we discuss
how the full corrugation design can reduce these unintended
torsional deformations.

2.4 Corrugation system

The corrugation brings together the geometric properties
from multiple scales into one interdependent structural sys-
tem. It should span a distance and be stiff regardless of how
it is oriented. We consider a corrugation made from a single,
developable sheet where no external components or con-
straints are used to stiffen the structure. The geometry of the
crease pattern can directly give insight to some of the stiff-
ness characteristics. Creases that are placed close together
would result in a smaller depth and smaller second mo-
ment of area. However, creases that are spaced far apart may
leave large regions of the sheet unrestrained, which could
result in unwanted and flexible deformations of the sheet
section (Figure 2b). Greater folding of the corrugation typi-
cally leads to a deeper section and a higher second moment
of area; however, the amount of folding also needs to con-
sider the desired geometry (for instance, final surface area).
The ability of the corrugation to maintain its folded state
(and thereby, stiffness) during loading will depend on the
crease stiffness, the sheet section stiffness, and the intrinsic
boundary conditions that restrain each crease. We have ob-
served that curved-crease corrugations with different crease
geometries provide better restraint to prevent unfolding and
flattening. Curved creases are important for reorienting the
cross-section to provide multi-directional stiffness for the
corrugation. The curved creases should have a large enough
change in directionality such that the depth of the cross-
section covers multiple axes (for instance, a change of more
than 120◦). When placing multiple creases together, it is
beneficial to use creases with different geometries such that
they can counteract torsional deformations of each individ-
ual crease. The curved creases can vary in both curvature
and general shape.

3 Corrugation geometries

In order to compare and analyze the effects of curved creases
on the bending stiffness of a planar-midsurface corrugation,
we chose five different crease patterns to explore. Each cor-
rugation starts with the following assumptions for its flat
crease pattern: (1) the origin of the coordinate system lies at
the lowest vertical point in the pattern and at the middle hor-
izontal point, (2) the pattern is symmetric about the y-axis
(this helps ensure the folded shape has a planar midsurface),
(3) the longest part of the pattern in the x-direction lies on
y = 0 and has length W , (4) the longest part of the pattern in
the y-direction lies on x = 0 and has length H, (5) the pattern
has n f creases and ns(= n f + 1) sheets between creases or
between a crease and an edge, and (6) the curves are defined
by one-to-one functions in the x-domain. These assumptions
do not include all possible corrugation patterns, but limits
the scope of the analysis.



6 Steven R. Woodruff, Evgueni T. Filipov

Each of the five models we chose displays different ge-
ometric features that theoretically change the bending stiff-
ness of the corrugation and allows for insights about how key
qualitative parameters laid out in Section 2 affect the bend-
ing stiffness of the corrugation. Key qualitative parameters
include the diversity of a crease’s tangent directions and the
depth of the cross-section throughout the structure. By fold-
ing physical models and running numerical simulations of
folding (described in Section 4.1), we know that each model
folds with little to no stretching deformation, does not inter-
sect itself in the tested range of folding, and does not display
buckling out-of-plane or other unstable behavior.

Each crease pattern starts with a zeroth curve that is just
a line segment defined as y0 = 0 on −W/2 ≤ x ≤ W/2.
The curves y1 through yns are defined based on the specific
geometry being used. Starting with the base constraining
assumptions, the following crease patterns and resulting cor-
rugations are constructed.

Straight-crease corrugation The straight-crease corrugation
serves as the baseline geometry for a traditional corrugation
design with a v-shaped cross-section, which we then use to
compare the different curved-creased designs. The geometry
has only one input beyond the constraining assumptions. This
pattern is shown in Figure 3a.

Parabolic-point corrugation The parabolic-point corruga-
tion is constructed using parabolic curves that share roots.
Because the curves meet at a point, the creases are easy to
restrain (for instance, using a pinned connection at the root).
However, because the curves meet at a point, the spacing
between the creases decreases near the root, which reduces
the corrugation depth. The parabolic geometry has two in-
puts beyond the constraining assumptions. This geometry is
shown in Figure 3b.

Parabolic-edge corrugation The parabolic-edge corrugation
is constructed by shifting the yns curve of the parabolic-point
corrugation down an equal spacing, H/ns . In this pattern, the
creases do not terminate at the same point, which makes the
pattern more prone to unfolding. However, the depth of the
corrugation is more consistent across the pattern. Similar to
the parabolic-point, this geometry has two inputs beyond the
constraining assumptions. This crease pattern is shown in
Figure 3c.

Elliptical-point corrugation The elliptical-point corrugation
is constructed using positive y-value, elliptical curves that
share roots and have semi-axes aligning with the x- and
y-axes. The elliptical shape has a larger area underneath
the curve than the parabola, giving a larger surface area for
the corrugation. Furthermore, the elliptical shape is bene-
ficial in that the roots give vertical folds (aligned with the

y-axis) which gives greater resistance to bending about the x-
direction near the bottom edge. However, the elliptical shape
has low curvature near x = 0 which could reduce the cor-
rugation’s ability to resist bending about the x-direction in
other parts of the corrugation. Similar to the parabolic-point,
the elliptical-point corrugation will resist unfolding at the
roots with fewer restraints, but will have less depth near the
roots. The geometry has three inputs beyond the constraining
assumptions and is shown in Figure 3d.

Elliptical-edge corrugation The elliptical-edge corrugation
takes the yns curve of the elliptical-point corrugation and
shifts it down a spacing, H/ns . Like the parabolic-edge cor-
rugation, depth is better preserved with this pattern, but the
system becomes more prone to unfolding. The geometry
has three inputs beyond the constraining assumptions and is
shown in Figure 3e.

These five crease patterns are used in the following sec-
tions. Further details on the functions used to generate the
curves and the geometric values used in the physical models
and bar and hinge simulations are presented in Appendix A.
We later predict the bending stiffness of these corrugations
and verify the prediction with experimental, three-point load
tests.

4 Predicting bending stiffness from the folded shape

Given a flat crease pattern, one could estimate the bending
stiffness of the folded corrugation using the framework pre-
sented in Section 2. For a geometry like the straight-crease
model, the depth of the structure, the sheet section stiffness,
and the effects of boundary restraints are easy to predict,
and thus, the stiffness can be inferred. For more complicated
geometries, like the curved-creased corrugations, there is
greater variation in the spacing between the curves and the
fold angles that minimize strain energy in the sheets. This
makes the process of surmising the folded bending stiffness
from the flat crease pattern prohibitively challenging.

In order to simplify the process of predicting the bending
stiffness of a folded corrugation, we offer two methods that
employ a bar and hinge simulation to find the folded shape
of a flat crease pattern and calculate quantitative metrics for
bending stiffness. In both methods, the quantitative metric is
analogous to the average secondmoment of area of the cross-
sections of the corrugation. In beam bending, the second
moment of area is used to describe the variation of area
in a cross-section about its centroid, which is associated
with resistance to strains in an elastic beam. Since a folded
corrugation does not have the same cross-section across its
length, the average second moment of area only gives an
approximate way of predicting the bending stiffness of the
system. Additionally, the methods we present only look at
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Fig. 3 Five corrugations with flat crease patterns, folded paper specimens, and folded bar and hinge simulations. The geometries used in subsequent
analysis are: (a) the straight-crease geometry, (b) the parabolic-point geometry, (c) the parabolic-edge geometry, (d) the elliptical-point geometry,
and (e) the elliptical-edge geometry.

the geometry of the folded shape which ignores the effects
of fold restraint. Despite these limitations, we found that
these methods for predicting the bending stiffness offer key
insights into the performance of the structure without having
to run physical tests or high-fidelity finite element models.

4.1 Bar and hinge method for estimating folded shape

The bar and hinge method is a simplified, physics-based
simulation tool that takes a flat crease pattern, material
properties, boundary conditions, and prescribed fold angles

and simulates the folding sequence of the thin sheet sys-
tem [6][25]. The bar and hinge method is able to capture
complex, mechanical behavior such as in-plane deforma-
tions and geometrically nonlinear stiffness responses using
input similar to finite elements [21]. Although originally de-
signed for straight-crease origami analysis, a modified bar
and hinge method simulates the folding of curved-crease
origami and can estimate the folded shape of patterns with
many creases [31].

The bar and hingemethodworks by describing the geom-
etry and deformation response with three element types: (1)
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bars that capture in-plane deformations, (2) bending hinges
that capture sheet bending, and (3) folding hinges that cap-
ture crease rotations. The force-deformation response is af-
fected by the stiffness of each element which is calculated
using the geometry of the crease pattern and the material
properties prescribed to the model. Folding is achieved by
prescribing a rest angle to rotational springs about the crease
(that is, the angle at which each crease is strain-free). The
bar and hinge method then minimizes the strain energy in
the system and converges to a folded state. Because the bar
and hinge method uses few degrees of freedom, simulations
take much less time to run than traditional shell modeling
with finite elements. Furthermore, bar and hinge modeling
of curved-crease origami captures folding without the con-
vergence issues often seen in finite element modeling. Our
prior work on this simulation approach showed its validity
for capturing the folding behavior of curved-crease origami
similar to the parabolic-edge corrugation [31]. The origami
geometry simulated with the bar and hinge model was com-
pared to a physical model folded by hand, and the Hausdorff
distance between the two had an average error of 0.4% of the
maximum length of the model. Given these qualities, the bar
and hinge method can be used to quickly predict the folded
shape, and can thereby be used in the two predictive methods
described in Sections 4.2 and 4.3.

For each of the five crease patterns, we ran bar and hinge
simulations to find the folded shape. The material properties
are defined to be those of the polyester film used to make
physical specimens for the experimental study in Section 5.
Eachmodel was folded such that the depth of the corrugation,
calculated as the difference between the highest point of the
mountain creases and the lowest point of the valley creases
in the z-direction, was identical. These three-dimensional
folded shapes are then analyzed using the two methods for
quantifying the stiffness of the corrugation.

4.2 Top-down method

The first procedure that we propose for predicting the bend-
ing stiffness of a folded corrugation is called the top-down
method. In this procedure, we investigate the entire corruga-
tion as a whole, and evaluate the cross-section at different
points along the span of the corrugation. Starting with the
three-dimensional folded shape of the corrugation, we pick
a direction, d, in the xy-plane, which we will consider as the
span direction (Figure 4a). The cross-section of the corru-
gation in the perpendicular direction (d ⊥) is then used to
compute the second moment of area, Id⊥, with a sheet thick-
ness used in the later experimental tests, t = 0.381 [mm]
(Figure 4b). The cross-section is divided into segments, the
neutral axis is found, and Equation 6, together with the par-
allel axis theorem, are used to find Id⊥.

Figure 4b shows how the secondmoment of area in the d-
direction of the parabolic-edge corrugation varies along the
length of the span. Peaks in Id⊥ correspond to portions of
the corrugation with large and deep cross-sections, while low
points correspond to smaller and shallower cross-sections. At
the ends of the span, the cross-section size and resulting Id⊥
approach zero. This distribution of bending rigidity along
the span is similar to conventional tapered beam designs
that have a smaller depth where the bending moments are
lower. Under three-point bending, the normalized curvature
k = M/Id⊥ (without an elastic modulus) tends to be low
until the ends of the span where Id⊥ approaches zero. For
a practical application, we can assume that those ends of
the corrugations will be supported vertically, and will not
experience any moments.

The average of the second moments of area is taken for
the central 80% of the span to provide a single quantitative
value, Īd⊥, for the corrugation in the given direction, d.
This averaged value for second moment of area can then
be presented for all directions in the xy-plane as a polar
plot where distance from the centroid represents a higher
magnitude (Figure 4c). Polar plots for all five models are
shown in Figure 4d. As expected, this procedure shows that
the straight-crease pattern has a high rigidity for bending
about the y-axis, but a low bending rigidity for bending about
the x-axis. About the x-axis, the second moment of area is
Īd⊥ = Wt3/12 = 0.461 [mm4], which implies just bending
of the thin sheet. The curved-crease corrugations have higher
secondmoments of area regardless of the direction, and there
is never a case where the cross-section is entirely flat in the
xy-plane.

4.3 Bottom-up method

The second procedure for predicting the bending stiffness of a
folded corrugation is called the bottom-up method. This pro-
cedure involves analyzing the corrugation at discrete points
along the length of the mountain creases, calculating a sec-
ond moment of area for that local area, and averaging the set
of values across the entire corrugation.

The bottom-up procedure relies on the discretization of
the corrugation such that each mountain crease bar (folding
element within the bar and hinge model) represents the size
of the sheet locally. Figure 5a shows a representation of the
parabolic-edge corrugation. With this crease pattern, there
are two mountain creases (shown as a dark line within the
corrugation). Figure 5b shows the corrugation divided into
discrete bars extending between points (for example, between
pi and pi+1). Each bar coincides with a vector, Ti , that is
roughly tangent to the folded crease at that point. The portion
of this vector lying in the xy-plane is inclined an angle, θi ,
from the x-axis. We treat this portion of the tangent vector
as the normal vector to a plane in which the z-axis lies.



Curved creases redistribute global bending stiffness in corrugations: theory and experimentation 9

x

y

x

y

0

40

80

x

y

0

20

40

x

y

0

20

40

x

y

0

20

40

x

y

0

20

40

(d)

Ī
d     

[mm4] Ī
d     

[mm4] Ī
d     

[mm4] Ī
d     

[mm4] Ī
d     

[mm4]

Straight-Crease Parabolic-Point Elliptical-Point Elliptical-Edge Parabolic-Edge

Ī
d    

[mm4]

x

y

d

(c) 

Distance along d, |d| [mm]

(b) 

M
o
m

en
t,

 
M

 [
N

-m
m

]
C

u
rv

at
u
re

*
,

κ 
=

 M
/I

d
 

2
n
d
 M

o
m

en
t 

o
f 

A
re

a,
 I

d
   

[m
m

4
]

Ī
d 

100

0

20

40

60

0

0.25

0.5

0

0.01

0.02

60 8020 400

Supports

d

(i) |d| = 30 [mm]

(ii) |d| = 60 [mm] 

(iii) |d| = 90 [mm]

d 

(a) System Cross-Sections 

x

y
z

z

t = 0.381 [mm]

(i)

(ii)

(iii)

(i) (ii)

(iii)

Fig. 4 (a) The cross-section geometries perpendicular to the direction d are obtained for multiple points (for example, (i), (ii), and (iii)) over the
span of the folded corrugation. (b) The cross-sections are then used to compute the second moment of area Id⊥ along the distance of d. If an
applied moment from a three-point bending is considered over the entire span, then most of the normalized curvature (*with no elastic modulus)
would occur at the ends of the corrugation; thus, we assume the ends are supported. (c) The second moment of area is averaged over the central
80% of the span for all directions in the xy-plane and is presented as a radial plot. (d) Īd⊥ for all directions in the xy−plane for the five corrugation
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This plane, defined by the coordinates z and z × Ti (where
“×” is the cross product), defines the surface on which the
two-dimensional unit cross-section shown in Figure 2c lies.

The next step in the bottom-up procedure involves finding
the intersection between that plane and the two adjacent
valley fold bars. The vectors SL

i and SR
i originate at the point

pi and extend to those intersection points. The unit cross-
section shown in Figure 5c represents the local cross-section
of that crease. Using Equation 6, we can calculate the second
moment of area of each sheet section, ILi or IRi , of the local
cross-section where s = sLi = |S

L
i | or s = sRi = |S

R
i | and t

is the prescribed thickness of the sheet (0.381 [mm]). The
dihedral angle, φ = φLi or φ = φRi , is calculated for each
sheet section. We sum the second moment of area for each
sheet section to get the local second moment of area, Iloci .
Because the length of each local mountain crease bar might
vary, we weigh the local second moment of area by the
length of the bar, L f

i = |Ti |, divided by the length of all the
mountain crease bars,

∑nmf

j=1 L f
j , where nmf is the number

of mountain fold bars in the bar and hinge model. The local

second moment of area for the ith mountain crease bar is
computed as

Iloci =
L f
i∑nmf

j=1 L f
j

(
IRi + ILi

)
. (7)

This expression represents the ability of the local unit cross-
section to resist bending about the z × Ti direction. In order
to predict the corrugation’s ability to resist bending about
another direction, we can find the projection of the local
second moment of area onto that direction. We calculate
the local second moment of area projected onto the x- and
y-directions and sum them to find a single value for the
corrugation using

Ilocx =

nmf∑
i=1
|Iloci sin θi |; (8)

Ilocy =

nmf∑
i=1
|Iloci cos θi |. (9)

We can then project these values onto any direction, d =
[cosα sinα], in the xy-plane angled, α ∈ [0, π/2] [rad] from
the x-axis using

Ilocd =
[
Ilocx Ilocy

]
· d = Ilocx cosα + Ilocy sinα. (10)



10 Steven R. Woodruff, Evgueni T. Filipov

(a) (b)

(c)

0

4

8

0

4

8

0

4

8

0

4

8

0

8

16

x

y

x

y

x

y

x

y

x

y

x

y

(d) 

I
loc 

[mm4]
 
  

Straight-Crease Parabolic-Point Elliptical-Point Elliptical-Edge Parabolic-Edge

I
loc 

[mm4]
 
  I

loc 
[mm4]

 
  I

loc 
[mm4]

 
  I

loc 
[mm4]

 
  

T
i

SL

i

SR

i

x

y

θ
i

SL

i
SR

i

z

z x T
i

p
i

p
i

p
i+1

p
i-1
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i . The resulting vectors are used to generate inclined rectangle cross-sections and we calculated the local second moment

of area of each rectangle. We normalized and averaged these values, Iloc , for each model and calculated the projection of each unit cross-section
second moment of area onto the x- and y-axes using θi . (d) Iloc is presented for each model folded to the same corrugation depth about all
directions in the xy-plane.

We assume that bending about d is equivalent to bending
about −d and exploit the symmetry of the given models
about the y-axis in this formulation.

The local second moment of area is calculated at each
point along the length of the mountain creases. Portions
of the model are excluded from this summation to account
for restrained portions of the structure. We calculated the
local second moment of area for each of the five specimen
models with boundary conditions similar to those in the
physical tests described in Section 5. These values are shown
in Figure 5d.We see that the results are similar to those found
in the top-down method shown in Figure 4d. Because of the
weighing factor and different approach to the methods, the
values are different, but the relative magnitudes are similar.
We next compared these prediction results to the results of
experimental tests on physical corrugation specimens.

5 Three-point bending tests of corrugations

In this section, we describe and assess experimental load-
deformation tests on corrugations made from polyester film
sheets using the crease patterns described in Section 3. The
experimental tests were designed to assess the stiffness of the
corrugations in bending about the x-, xy- (the direction an-

gled 45◦ from the x-axis), and y-axes. We conducted these
tests to address two main points. The first purpose was to
demonstrate that curved-crease corrugations reduce the dif-
ference in stiffness between the weakest bending direction
and the strongest, effectively allowing the corrugation to be-
have more like an isotropic plate than a highly orthotropic
structure. The second purpose was to demonstrate that the
qualitative framework presented in Section 2 used to create
the quantitative predictions for stiffness found in Section 4 is
suitable for predicting the stiffness of the corrugations. The
experiments aimed to reduce the complexity of the frame-
work by making all specimens with the same material prop-
erties, thickness, corrugation depth, and similar boundary
conditions.

5.1 Experimental setup and procedure

Each of the five corrugation specimens were designed and
fabricated using the flat crease patterns described in Sec-
tion 3. The pattern was drafted in a computer-aided design
software, and then cut into Graphix Dura-Lar polyester film
sheets using a laser cutting machine. We chose this material
because of its predictable material properties, its ability to
undergo large deformations without permanent damage, and
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for its ability to hold folded shapesmostly due to plastic dam-
age in the creases after folding. The sheets were 0.381 [mm]
(0.015 [in]) thick, and each corrugation was folded by hand
such that the final depth, defined as the distance between
the highest point along the mountain creases and the lowest
point along the valley creases, was approximately 6 [mm]
deep. Each of the five crease patterns was cut and folded
three times, giving three samples for each corrugation.

The corrugations were loaded using a Mark-10 test stand
(ESM1500FG) and force gauge (M5-50) (see Figure 6). The
load cell had a resolution of 0.05 [N], which is less than 1%of
the maximum load carried by the specimens. Displacement
of the specimen was measured by the machine, and the mag-
nitudes were verified using camera recordings. The forces
for these tests are low, and deformation within the equip-
ment is negligible compared to the specimen. The folded
corrugations were placed on top of two aluminum supports
which gave an unsupported span of 50 [mm]. Double-sided
tape applied to the top of the aluminum supports held the
corrugations in place and limited unfolding early in the load-
ing process. The corrugations were aligned on the aluminum
supports using guides that pointed to the center of the speci-
men. The corrugations were placed in one of three directions:
x, xy, or y, which correspond to orientations of the load bar
relative to the corrugation coordinate system. The load bar
was 10 [mm] wide and made out of an acrylic sheet. The
load bar was designed to allow for rotations with minimal
friction at the connection to the load transfer box (an acrylic
box that connects to the force gauge). The rotations allowed
the bar to come into contact with multiple mountain creases
on the corrugation without generating a notable axial force
at the load cell. At the load transfer box, loosely attached
clamps were used to prevent the bar from sliding along the
dowel between the two supports.

A displacement-control test was conducted at a rate of
3.0 [mm/min]. Collection of the load data started when a
trigger load of 0.10 [N] was measured to ensure that the load
bar made full contact with the mountain creases. The load-
displacement data was recorded at a sampling rate of three
points per second for the duration of the test.

The displacement was carried out for 10 [mm] after the
trigger load was measured. During the displacement-control
test, we observed four stages of behavior. These stages de-
marcate the start and end points of where the data was ana-
lyzed to calculate the stiffness of the structure (see Figure 7).
The first stage involves partial contact between the load bar
and the mountain creases of the corrugation, and thus, the
stiffness is low. Once the load bar has rotated to the point
where full contact is made with multiple mountain creases,
the stiffness rises. This stage is used to calculate the bending
stiffness of the corrugation, k. As loading continues, the bar
might come into contact with other parts of the corrugation
(Figure 7b). This ends the stiffness extraction stage and starts

a period of increased stiffness due to greater participation of
the material in resisting loads. This stage continues until one
of themountain creases flattens, resulting in a loss of stiffness
(Figure 7c). The last stage involves large bending deforma-
tions with low stiffness due to the corrugation progressively
becoming flatter (Figure 7d).

In the second stage, the load-deformation data is more-
or-less homoscedastic (that is, the data surround a linear
trend line with small variance). Using linear regression, the
slope of the trend line can be calculated which represents
the stiffness of the corrugation in the downward direction.
Because the ratio of the depth of the corrugation to the un-
supported span is about 12%, we can assume that the cor-
rugation is slender and that the deformation in this stage is
mostly due to bending about the direction parallel to the load
bar. The stiffness extraction process was repeated for each of
the three samples of the five corrugations in the x-, y-, and
xy-directions, resulting in a total of 45 tests and analyses.
The R2 value of each analysis was always greater than 0.95
with most analyses exceeding 0.98, which suggests that the
data closely fit with the linear model. We found the average
of the slopes of the trend lines (that is, the average of the
stiffness values) from the three samples in one load direc-
tion for each corrugation, which we call the stiffness of the
structure, k. Load-displacement results from the experimen-
tal tests that were used to find the stiffness values are shown
in Figure 8.

5.2 Experimental results and discussion

The five corrugation geometries in Figures 4, 5, 8, and 9
are ordered based on the ratio of the stiffness in bending
about the x-direction, kx , to the stiffness in bending about
the y-direction, ky , for the average values from the exper-
imental data. This ratio, kx/ky , is one way of describing
the corrugation’s ability to resist bending in multiple direc-
tions. The closer the ratio is to 1, the more isotropically
the corrugation behaves. As predicted, the experimental re-
sults show that the ratio for the straight-crease specimen is
the lowest, kx/ky = 3.74%. For the parabolic-point spec-
imen, the ratio is, kx/ky = 56.1%. For the elliptical-point
specimen, kx/ky = 58.0%. For the elliptical-edge speci-
men, kx/ky = 70.5%. The parabolic-edge specimen had the
largest ratio, kx/ky = 93.4%.

Figure 8 shows the load-displacement results for each
model in each of the three loading directions, where a single
direction trend (for example, x) is obtained from averaging
the slope of the three sample experiment regressions. The
trend lines show the isotropy visuallywherewith the straight-
crease model (Figure 8a), the average stiffness trends are
separated, but with the parabolic-edge model (Figure 8e),
the lines coincide. The representation in Figure 9c offers
greater insight into the results as it shows the magnitude of
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the stiffness relative to the other specimens. We see that al-
though the parabolic-edge specimen shares similar stiffness
in bending about the x-, xy-, and y-directions, the magni-
tude of the stiffness is less than the maximum magnitude of
the straight-crease model. Thus, we say that curved creases
“redistribute” stiffness to emphasize the trade-offmadewhen
the corrugation’s directionality is no longer uniform. In cases
where the corrugation must have a similar bending stiffness
in all directions without adding additional members or stiff-
eners to the structure, curved creases may offer a solution, at
the cost of reducing the maximum bending stiffness.

Between the four curved-crease corrugation specimens,
we see that the results differ. Namely, the specimens whose
flat crease patterns come to a point at the corner give lower
stiffness values than the crease patterns that meet at the edge.
The point models behave similarly to the straight-crease
model in that stiffness in bending about the x-direction is
lowest, followed by bending about the xy-direction, with
bending about the y-direction being the stiffest. This pattern

between direction stiffness is not maintained for the edge
specimens.

5.3 Comparison with theoretical predictions

Next, we compare the bending stiffness predictions made
in Section 4 to the experimental results. The values of the
top-down procedure (Section 4.2) take an average of the
second moment of area, Īd⊥, over the length of the system
while the bottom-up procedure (Section 4.3) averages the
local second moments of area, Iloc . Thus, these approximate
predictions do not directly correspond to the experimental,
load-deformation stiffness, k, which is computed as a repre-
sentative value for the bending rigidity of the structure. Like
with a tapered beam, this bending stiffness of the corruga-
tions does not directly relate to the average secondmoment of
area of the cross-sections.With this in mind, we can compare
the predicted bending stiffness to the experimental results by
looking at themagnitudes of themeasured values (either Īd⊥,
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Iloc , or k) relative to the other bending directions or the other
geometries (see Figure 9).

In general, the predictions made by both the bottom-up
and top-down procedures predicted the general stiffness re-
lationships well. For the parabolic-point and elliptical-point
models, the magnitude of Īd⊥ (Figure 9a) relative to the three
bending directions matches the relative magnitude of the av-
erage stiffness found in experimental testing (Figure 9c).
The relative pattern is also found from the magnitude of Iloc
(Figure 9b). For the elliptical-edge model, the top-down pro-
cedure gave a more accurate prediction of the experimental
results when looking at the relative magnitudes of Īd⊥ in all
three directions. The bottom-up procedure overestimated the
corrugation’s ability to resist bending about the xy-direction.
For the parabolic-edge model, the bottom-up procedure for
calculating Iloc gave a better prediction of the relative bend-
ing stiffness than the top-down procedure did. However, the
bottom-up procedure did overestimate the bending stiffness
about the xy-direction.

For both the bottom-up and top-down procedures for pre-
dicting bending stiffness of the straight-crease corrugation,
the stiffness in the xy- and y-directions was overestimated

compared to the values measured in experimental testing.
This overestimation is likely due to the inability of the predic-
tion procedures to incorporate unfolding of the corrugation
upon loading. The predictions rest on the assumption that
the corrugation will not unfold when loading starts. How-
ever, as we observed during loading, the models do unfold as
the load bar makes contact with the mountain nodes. With
curved-crease corrugations, this effect is less pronounced due
to greater crease restriction from other creases surrounding
the single crease section, and thus those predictions appear
to be better. This discrepancy illustrates the importance of
considering all aspects of the qualitative framework, includ-
ing the properties that cannot be captured from the folded
geometry alone (that is, fold restriction and geometric char-
acteristics that reduce unfolding).

Additionally, either method for predicting the bending
stiffness of a corrugation from the folded geometry presup-
poses that the predominant deformation is bending.Although
bending plays an essential role in the deformation, torsion
within the folded corrugation also contributes to deforma-
tions. Both Īd⊥ and Iloc fail to capture the ability of the
crease to deform in torsion about the crease direction. This
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(a) Fig. 8 The load-deformation response of the five models from ex-
perimental testing in three directions of bending. Regression analysis
on each test is used to calculate the slope (i.e., the stiffness), and the
average slope is presented as the trend line. (a) The straight-crease
model displays the greatest difference between direction stiffness. (b)
The difference significantly narrows with the parabolic-point model
and continues with the (c) elliptical-point model and (d) elliptical-edge
model. (e) The load-deformation response of the parabolic-edge model
shows the most consistent stiffness in all directions – as predicted.

issue, along with the inability to approximate the unfolding
behavior, results in these second moment of area estimates
to consistently overestimate the actual stiffness of the struc-
ture by factors of 3 to 4. For clarity, we do not present these
quantitative comparisons here.

Despite these limitations, the methods for predicting
bending behavior of a corrugation, either including the full
qualitative framework or just the geometric elements, offers
a simpler solution than either experimental testing or finite
element modeling. The benefits of the top-down and bottom-
up procedures start with the benefits of using a simple bar
and hinge model to estimate the folded shape. The bar and
hinge model can fold corrugations quicker than with a finite
element model and is more likely to converge to the desired
fold shape. Although the predictions for bending stiffness do
not offer an exact mapping to the experimental performance,
they offer key insights into the behavior of the corrugation
relative to other crease patterns with a simple values (such as
Iloc). In cases where a pattern must be chosen to accomplish
some goal (for instance, having a similar bending stiffness
in all directions in the xy-plane), designs can be compared
quickly as prototypes. The final design can be modeled with
greater fidelity in a finite elements program to better account
for torsional and fold restriction effects.

6 Conclusions and future work

In this paper, we introduced and explored corrugations with
curved creases which are unique because they have a high
bending stiffness in multiple directions. We then presented
a theoretical framework and two predictive methods that use
the geometry of a corrugation to qualitatively estimate its
stiffness characteristics. Experimental data verified themulti-
directional bending stiffness of corrugations, and confirmed
the validity of the predictive methods.

We offered a theoretical, qualitative framework for relat-
ing the bending stiffness of a corrugation to its geometric
properties at four scales: (1) sheet sections, (2) unit cross-
sections, (3) single creased sheets, and (4) the corrugation
system. The framework suggests that the depth of creases,
the ability of the system to resist flattening, the curvature
and orientation of curved creases, and the different variety
of crease geometries in a corrugation are all important char-
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Fig. 9 A comparison between the theoretical bending stiffness predictions and the experimental results in the x-, xy-, and y-directions for each of
the five models. The prediction methods, (a) top-down and (b) bottom-up, use different averages for the second moments of area about directions
in the xy-plane as a proxy for bending stiffness. The shapes of the bars in (c) the experimental results corresponds to the shapes of the bars in the
prediction results, suggesting that second moment of area is proportional to the bending stiffness, with errors stemming from the limitations of each
prediction method.

acteristics influencing the stiffness. This framework allows
a designer to make a rough estimate of the bending stiff-
ness and identify issues with a corrugation by looking at the
folded geometry.

We also offered two methods to predict the bending stiff-
ness of a corrugation by analyzing the geometry that is sim-
ulated by a bar and hinge model. Both methods make an
approximation of the second moment of area within the cor-
rugation geometry. The top-down method approaches the
problem globally by looking at the entire cross-section at dif-
ferent points along the span of the corrugation. The bottom-
upmethod looks locally at the orientation of crease segments

and evaluates their contribution for different directions of
bending.

We analyzed five example corrugations, where one was
a straight-crease pattern and four had different curved-crease
designs. The two predictive methods gave similar results to
each other, and identified differences between the corruga-
tion designs. We then validated the theoretical framework
and predictive model using experimental three-point bend-
ing tests on polyester film specimens of the example corru-
gation. We found that the theoretical frameworks effectively
estimated the relative magnitude of the bending stiffness for
each model in the x-, xy-, and y-directions. There were small
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deviations attributed to the fact that the quantitative frame-
work cannot capture certain features of the corrugation, such
as fold stiffness and boundary restraints on the structure.
Each method showed that traditional, v-shaped corrugations
made with straight creases have stiffness anisotropy, while
the curved-crease corrugations are stiff in multiple direc-
tions. Additionally, patternswhere curved creases intersected
one edge gave higher bending stiffness than patterns where
creases coincide at the corners.

This work is a starting point for future research on the
conception, analysis, or design of curved-crease corruga-
tions with novel mechanical properties. The proposed frame-
work can predict corrugation stiffness, but could be further
improved to include the influence of boundary conditions
and flattening of the creases during loading. The multi-
directional stiffness of the curved-crease corrugations can be
reasonably explained by the diverse directionality of creases;
however, it would be worthwhile for future work to explain
exactly how these corrugations resist bending and torsional
deformations. Insight to the stress distribution and load paths
within the corrugation can give a more elegant explanation
to the local mechanics responsible for the unique multi-
directional stiffness. Additionally, further investigation into
the influence of the Poisson’s effect within the corrugation
would improve the accuracy of these findings for amore thor-
ough mechanical treatment of curved-crease corrugations.

The corrugation geometries that we have presented in
this work were developed through trial and error, and were
refined based on our geometric framework in Section 2.
However, many variations are possible with curved-crease
geometries, and it would be helpful to systematically ex-
plore these through parametric studies (for example, number
of creases, curvatures, spacings, etc.). These studies could
be further extended to perform optimization of the stiffness,
anisotropy, or shape of the pattern. Additionally, understand-
ing the predominant stiffness of nonplanar-midsurface cor-
rugations could begin by using the insights found in our
investigation of planar-midsurface corrugations with the ad-
dition of predicting the torsional and shear stiffness. Finally,
future work is needed to explore practical applications of
the curved-crease corrugations in both conventional applica-
tions such as stiff decking or in emerging applications such as
morphing or multi-functional structures. This article sets an
important starting point for analyzing general corrugations,
including curved-crease corrugations, by offering qualitative
and quantitative methods for analyzing the structures rela-
tive to other designs. We hope that further research into the
topic will expand the scope of our knowledge and allow for a
complete understanding of the bending behavior, including
a theoretically or empirically verified mapping between the
average second moments of area and the bending stiffness.

Our methods for describing the bending stiffness of cor-
rugations offers a way for engineers to design for isotropy

of bending stiffness by visually analyzing the folded pattern
and running quick folding simulations using a simple bar and
hinge model. This process does not require complex finite
element simulations, which from our experience, can be dif-
ficult to carry out for curved-crease folding patterns. These
new methods have the possibility of connecting the form of
curved-crease origami to its function in a variety of applica-
tions that require continuous, lightweight sheets as structural
members.
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Appendix A: Details on the crease pattern geometries

In this appendix, we give the specific functions used to gener-
ate the flat crease patterns shown in Figure 3.We also present
the values we used in the functions so that our results can be
further examined or replicated. Note that for each of the five
geometries, W = 100 [mm], H = 100 [mm], ns = 5, and
i ∈ {1,2,3,4,5}.

Straight-crease corrugation For the straight-crease corruga-
tion, there is one input besides the constraining assumptions:
ai . The function defining the ith curve of the crease pattern
is,

yi = ai, (11)

where,

ai =
H
ns

i. (12)

The functions are defined in the domain −W/2 ≤ x ≤ W/2.
An example crease pattern used in the analyses and experi-
mentation is shown in Figure 3a with corresponding param-
eter values in Table 1.

Parabolic-point corrugation For the parabolic-point corru-
gation, there are two inputs besides the constraining assump-
tions: bi and ci . The function defining the ith curve is,

yi = bi x2
i + ci, (13)

where,

ci =
H
ns

i; bi = −
4ci
W2 = −

4H
W2ns

i. (14)

The functions are defined in the domain−ri ≤ xi ≤ ri , where
ri =

√
−ci/bi = W/2. An example crease pattern is shown

in Figure 3b with corresponding values in Table 2.
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Table 1 Geometric parameter values for example straight-crease pat-
tern (see Figure 3a).

yi = ai , −ri ≤ xi ≤ ri

i ai [mm] ri [mm]

1 20.0 50.0

2 40.0 50.0

3 60.0 50.0

4 80.0 50.0

5 100 50.0

Table 2 Geometric parameter values for example parabolic-point pat-
tern (see Figure 3b).

yi = bix
2 + ci , −ri ≤ xi ≤ ri

i bi [mm−1] ci [mm] ri [mm]

1 −0.008 20.0 50.0

2 −0.016 40.0 50.0

3 −0.024 60.0 50.0

4 −0.032 80.0 50.0

5 −0.040 100 50.0

Table 3 Geometric parameter values for example parabolic-edge pat-
tern (see Figure 3c).

yi = bix
2 + ci , −ri ≤ xi ≤ ri

i bi [mm−1] ci [mm] ri [mm]

1 −0.040 20.0 22.4

2 −0.040 40.0 31.6

3 −0.040 60.0 38.7

4 −0.040 80.0 44.7

5 −0.040 100 50.0

Parabolic-edge corrugation For the parabolic-edge corru-
gation, two inputs additional inputs are required: bi and ci .
The function defining the ith curve is,
yi = bi x2

i + ci, (15)
where,

bi = −
4H
W2 ; ci =

H
ns

i. (16)

Each curve is defined in the domain −ri ≤ x ≤ ri , where
ri =

√
−ci/bi =

√
W2i/(4ns). An example crease pattern is

shown in Figure 3c with corresponding values in Table 3

Elliptical-point corrugation For the elliptical-point corru-
gation, three inputs besides the constraining assumptions are
required: di , ei , and fi . The function defining the ith curve is,

yi = ei

√
1 −

(
xi
di

)2
+ fi, (17)

Table 4 Geometric parameter values for example elliptical-point pat-
tern (see Figure 3d).

yi = ei
√

1 − (xi/di )
2 + fi , −ri ≤ xi ≤ ri

i di [mm] ei [mm] fi [mm] ri [mm]

1 50.0 20.0 0.00 50.0

2 50.0 40.0 0.00 50.0

3 50.0 60.0 0.00 50.0

4 50.0 80.0 0.00 50.0

5 50.0 100 0.00 50.0

Table 5 Geometric parameter values for example elliptical-edge pat-
tern (see Figure 3e).

yi = ei
√

1 − (xi/di )
2 + fi , −ri ≤ xi ≤ ri

i di [mm] ei [mm] fi [mm] ri [mm]

1 50.0 100 −80.0 30.0

2 50.0 100 −60.0 40.0

3 50.0 100 −40.0 45.8

4 50.0 100 −20.0 49.0

5 50.0 100 0.00 50.0

where,

di =
W
2

; ei =
H
ns

i; fi = 0. (18)

Each curve is defined in the domain −ri ≤ xi ≤ ri , where
ri = di

√
1 − (− fi/ei)2 = W/2. An example crease pattern is

shown in Figure 3d with corresponding values in Table 4.

Elliptical-edge corrugation For the elliptical-edge corruga-
tion, three inputs are required besides the constraining as-
sumptions: di , ei , and fi . The function defining the ith curve
is,

yi = ei

√
1 −

(
xi
di

)2
+ fi, (19)

where,

di =
W
2

; ei = H; fi = H
(

i
ns
− 1

)
. (20)

Each curve is defined in the domain −ri ≤ xi ≤ ri , where
ri = di

√
1 − (− fi/ei)2 = W/2

√
2i/ns − (i/ns)2. An example

crease pattern is shown in Figure 3e with corresponding
values in Table 5.
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